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ABSTRACT 

The problem of when to build a lot of component parts, and how many 

to include in the lot so as to minimize overall production costs, is a 

fundamental problem facing all repetitive manufacturing environments. 

Recently this problem has been addressed through the use of Material 

Requirements Planning (MRP). However, MRP is not in itself a complete 

answer, since it does not provide a built in method to determine lot sizes 

and thus optimize the total cost. 

A number of authors have studied the problem of developing lot sizes 

in MRP systems, however a consensus has been reached on very little. One 

reason that few of the results agree is, simply, they lack a basic 

examination of the actual problem structure. By examining this structure, 

several currently unrecognized or misunderstood features can be developed. 

This dissertation begins by developing these features and studying how 

they impact upon the lot sizing solutions. 

These features allow a relatively simple, yet robust, new method of 

determining lot sizes to be developed. This new method is called the 

Integer Lot Sizing (ILS) heuristic. While, in some ways, the ILS 

heuristic is similar to previously explored lot sizing methods, in many 

aspects the ILS heuristic is unique. By utilizing the newly recognized 

features of MRP systems, the ILS heuristic develops costs which approach 

the optimum while utilizing an acceptable amount of computational 

resources. 
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I. INTRODUCTION 

The problem of when to build a lot of component parts, and how many 

to include in the lot when it is built so as to minimize the overall 

production costs, is one of the most fundamental problems facing any 

repetitive manufacturing environment. Enormous amounts of effort and 

resources have gone into the study of this problem during this century. 

Indeed this problem forms one of the basic areas of the entire Industrial 

Engineering profession. 

The earliest work on this problem utilized statistical methods to 

minimize the costs associated with each of the various components which 

goes into a finished product. The application of these methods was 

performed on each component separately. The overall costs of operation 

were then imagined to be minimized due to the minimization of costs 

associated with each of the respective component parts. While these 

statistical methods have proven valuable for the independent demand 

environment, they do not accurately represent the dependent and discrete 

demand situation which is present in a repetitive manufacturing 

environment. 

In 1958 Wagner and Whitin introduced a new means of analyzing a 

problem which contains discrete demands. They developed a methodology 

which produces the optimum (lowest) total cost solution for a single 

component over a given number of discrete time periods, when the demands 

for the component are known with certainty for each of the discrete time 
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periods. The method they developed has become known as the Wagner-Whitin 

(WW) algorithm. 

Since the 1960s, a number of authors have presented heuristic methods 

which solve the same problem as the WW algorithm. These methods do not 

guarantee the optimum total cost. However, they (hopefully) develop a 

total cost which is close to optimum, while using only a small portion of 

the computational resources required by the WW algorithm. The utility of 

the heuristic methods ranges from poor to excellent. 

While addressing the discrete nature of the demands in a repetitive 

manufacturing environment, neither the WW algorithm nor the heuristic 

methods addressed the dependent nature of the demands. However, in 1975 

Orlicky presented a methodology which can be used to model the dependent 

demand environment. This methodology is generally known as Material 

Requirements Planning or MRP. 

However, the MRP methodology is not in itself a complete answer to 

the underlying problems. MRP does not provide a built in method to 

determine lot sizes and thus optimize the total cost developed during the 

production of a product. Orlicky simply applies the WW algorithm and some 

of the heuristic methods developed earlier to the individual component 

demands developed in the MRP system. In the end he states "There does not 

appear to be one best lot sizing algorithm that could be selected ...". 

Since 1975 a number of authors have studied the problem of developing 

lot sizes in MRP systems. The work of these authors has ranged from 
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simple comparisons of the methods proposed by Orlicky, to the presentation 

of new methods, to the extension of the WW algorithm so that it can more 

accurately model the dependent demand environment. While this work forms 

an impressive array of ideas and systems, a consensus is reached on very 

little. 

One reason that few of the results from preceding studies agree is, 

simply, they lack a basic examination of the actual problem structure 

presented by a MRP system. By examining the basic problem structure, 

several currently unrecognized or misunderstood features can be developed. 

This dissertation begins by developing these features and studying how 

they impact upon the possible lot sizing solutions. These features 

represent, both, the discrete and dependent nature of component demands 

which are always present in an MRP system. 

These features allow a relatively simple, yet robust, new method of 

determining lot sizes to be developed. This new method is called the 

Integer Lot Sizing (ILS) heuristic. While, in some ways, the ILS 

heuristic is similar to previously explored lot sizing methods, in many 

aspects the ILS heuristic is unique. By utilizing the newly recognized 

features of MRP systems, the ILS heuristic develops costs which approach 

the optimum while utilizing an acceptable amount of computational 

resources. 

The basic thrust of this dissertation is, therefore, divided into two 

successive areas. First, and perhaps foremost, a more comprehensive 

understanding of MRP systems is developed, to provide a framework for 
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subsequent work. Secondly, a new lot sizing method, the ILS heuristic, is 

developed. The ILS heuristic is based upon the MRP features developed in 

this dissertation and, hopefully, represents a step forward in the 

continuing struggle to more efficiently operate a repetitive manufacturing 

environment. 
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II. LITERATURE REVIEW 

The amount of study that has gone into the problem of inventory 

control and the quantity of literature that has been generated by this 

study is, simply, enormous. The literature ranges from introductory texts 

which illustrate basic inventory control models using highly simplified 

abstractions, to extremely complex dissertations which utilize 

mathematical optimization techniques, to user manuals which describe 

entire computer languages which are designed to simulate actual 

manufacturing situations. While it is well beyond the scope of this 

literature review to examine all the preceding literature, the preceding 

literature can easily be divided into three basic areas. Each of these 

three areas is discussed in a subsequent section. The three general areas 

of study into inventory control problems are; 

• The independent demand environment. 

• The single level discrete demand environment. 

• The multilevel discrete and dependent demand environment. 

A. The Independent Demand Environment 

The independent demand environment, simply, describes a setting in 

which demand for a product or service is created in isolation of the 

actions taken by the party which will satisfy the demand. Thus the 

producer of a product or service in this environment must plan for unknown 

and perhaps highly variable demand. The resulting demand pattern can, of 

course, be influenced by outside forces such as weather, competition, or 
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economic setting. Examples of independent demand include sales of 

gasoline at a service station, sales of automobiles at a car dealership, 

or service calls to the local plumber. 

Studies of the independent demand environment include models for, 

both, discrete and continuous demand. That is, the demand can be in unit 

quantities (discrete) or in indivisible quantities (continuous). While 

the results generated by these studies are not directly applicable to the 

subject of this dissertation, extensions of the results are sometimes 

useful. These extensions are used and noted were they occur. 

This dissertation makes no general attempt to describe or categorize 

the independent demand environment studies and the resulting literature, 

except to note that they do exist and form a valid and useful subset of 

the work that has been done on the inventory control problem. 

Descriptions of the results of studies into the independent demand problem 

are included in most inventory control texts, samples of which are readily 

available [22, 53, 95, 122, 241]. 

B. The Single Level Discrete Demand Environment 

The single level discrete demand environment is categorized by a 

series of time phased independent discrete demands, a set of cost 

parameters, and the operating costs which occur from various production 

timings. The objective of studies into this environment is to develop a 

system which minimizes the resulting costs for the given set of inputs. 

Studies into this problem are numerous [4, 7, 9, 11, 13, 14, 27, 37, 38, 
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39, 42, 47, 51, 58, 62, 65, 84, 87, 88, 93, 97, 99, 100, 103, 104, 105, 

111, 112, 113, 114, 118, 127, 128, 129, 130, 133, 134, 139, 142, 148, 149, 

150, 151, 153, 174, 177, 182, 183, 184, 204, 208, 209, 219, 220, 221, 230, 

233, 234, 253, 256, 257, 259, 260, 266, 267, 272] and diverse. These 

studies contain, both, heuristic and optimal solutions. 

A complete review of this environment would form a extensive body of 

work. Since this dissertation focuses on the multilevel problem, such a 

review is not performed. Rather, this dissertation relies largely upon 

the results of one previous study [127] into the single level discrete 

demand environment. This dissertation is, then, an extension of the 

previous study, with this extension performed by analyzing the results of 

the previous study and determining how they interact with the multilevel 

environment. Of note, a second, more recent, comprehensive study of this 

environment [208, 209] found results which are remarkably similar to those 

found by the primary study. 

The results of the primary single level study are: 

• The single level environment reacts in an understandable and 

predictable manner to various inputs. 

• The overall performance of the different heuristics tested varied 

markedly, with only four yielding acceptable overall results. The 

best overall heuristic was the Groff marginal cost rule. 

• The performance of the heuristics was based more upon the logic of 

the heuristic than upon the various input parameters. 
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• The performance of the best heuristic methods was close to optimum 

for most input parameters and differed from optimum by an 

acceptable margin for all input parameters. 

• The method used to calculate holding costs can affect the 

performance of some, but not all, of the heuristics. 

C. The Multilevel Discrete and Dependent Demand Environment 

The multilevel discrete and dependent demand environment defines the 

type of inventory control problem which is common in repetitive 

manufacturing. In the early 1970s a system of maintaining order in a 

discrete and dependent demand environment was developed [193, 199]. This 

system became known as materials requirements planning or MRP. In this 

dissertation, the terms 'multilevel discrete and dependent demand 

environment' and 'MRP environment' are synonymous. 

An MRP environment is categorized, first, by a series of time phased, 

independent discrete demands for a finished product. This demand series 

is generally known as the master production schedule (MPS). The MPS shows 

the quantity of finished products that are required for each discrete time 

period into the future, up to some maximum future date. The amount of 

time that the master production schedule covers is known as the planning 

horizon. 

The demands for the finished product, in turn, create demands for the 

component parts of the finished product. The component demands are said 

to be dependent upon the demand for the finished product. The components 
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are required in integer multiples of the demands for the finished product. 

That is, 1 or 2 or 3 or etc. of each component item is required for each 

finished product. These component demands are also time phased. However, 

they are required at an earlier time than the corresponding finished 

product demands. 

The component demands will, in turn, create demands for their 

components. Thus, the demands for the finished product, in essence, 

cascade through a series of levels of component parts, until finally the 

demands for the finished product are broken down into the corresponding 

demands for raw materials. A brief example can, perhaps, best illustrate 

this process. This example is referred to throughout this literature 

review. 

Suppose that a factory is building toy wagons. Each wagon consists 

of one painted box, one painted handle, and four painted wheel-tire 

subassemblies. If the demand for the finished product, the toy wagon, is 

known to be 50 units in week 10, the demand for the components that are 

required is also known. However, these components need to be ready in 

week 10, so they need to be assembled in week 9. The component demands 

for week 9 in this simple example would be: 50 painted boxes, 50 painted 

handles, and 200 painted wheel-tire subassemblies. 

These component demands in week 9 would, in turn, generate 

subcomponent demands in week 8. The entire system would finally result in 

showing the time phased demands for the raw materials; the sheet steel to 

build the boxes, the tube steel to build the handles, the paint, etc. If 
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the master production schedule also shows demand for the toy wagon in week 

11, this demand could also be cascaded through the system and would result 

in additional time phased demands for all the components. 

However, simply cascading the component demands, probably, does not 

result in a workable, let alone optimum, solution. Such a solution would 

require that each component be built in each period where there was a 

demand. Thus, these cascaded demands need to be grouped together into 

workable and expedient sizes. This grouping is done by lot sizing the 

demands. Lot sizing logic is included in all MRP systems. 

Since the advent of MRP, a number of authors have noted problems and 

inconsistencies in the MRP lot sizing logic. Each of these areas of 

contention is discussed in a separate section. The areas of contention 

surrounding MRP are: 

• The components of the setup cost and how it should be calculated. 

• The components of the holding cost and how it should be calculated. 

• The manner in which test demand arrays should be constructed. 

• The manner in which capacity restrictions and interactions affect 

test models. 

• The manner in which product structures and cost ratios for the 

components are modeled. 

• The manner in which scrap and/or rework is handled in the model. 

• The manner in which component lead times should be included in test 

models. 

• The impact of a rolling horizon on model performance. 
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• The system nervousness that is created as a result of changes in 

the master schedule or changes in the status of component parts. 

• The validity of the integer principle for calculating lot sizes. 

• The ability to collapse the problem into a less complex form. 

• The manner in which lot sizes are calculated. 

• The results of real world applications of the MRP model. 

1. Discrete time and discrete demand 

The description of discrete time and discrete demand is one of the 

few areas of MRP that has a general agreement of validity and meaning. 

The total demand for finished products is simply divided into the 

quantities which represent the demand during a series of discrete, and 

usually equivalent, time intervals. Thus, time does not flow 

continuously, but rather in equivalent jumps. Also, the demands are not 

imagined to occur throughout each discrete time interval, but rather to 

occur in entirety at the start of the respective time interval. By 

imagining the entire demand to occur at the start of each period, any 

underlying demand patterns are also satisfied. 

For example, returning to the toy wagon, imagine that the demands 

shown in Table 2.1 are forecast to occur. If a discrete time interval of 

1 month is chosen, these demands would appear as shown in Table 2.2. If a 

discrete time interval of 1 week is chosen, these demands will appear as 

shown in Table 2.3. In all three tables, the total demand is the same. 

The demands have simply been fitted into a system utilizing different 

discrete time intervals. 
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TABLE 2.1 - Sample Demand Data 

DEMAND DEMAND DATE DEMAND DEMAND DATE DEMAND DEMAND DATE 

7 1/5 5 2/3 22 3/3 
11 1/8 12 2/5 14 3/8 
18 1/12 29 2/9 7 3/10 
25 1/15 6 2/12 
9 1/18 8 2/16 
14 1/20 11 2/19 
3 1/26 21 2/23 
20 1/28 17 2/26 

TABLE 2.2 - Monthly Periods 

PERIOD JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEP. OCT. 

DEMAND 107 109 43 ? ? ? ? ? ? ? 

TABLE 2.3 - Weekly Periods 

PERIOD 1/4 1/11 1/18 1/25 2/1 2/8 2/15 2/22 2/29 3/7 

DEMAND 18 43 23 23 17 35 19 38 22 21 

The length of time forming a discrete time interval is important in 

an actual MRP system [49]. However, in a simulation the time interval 

does not need to be defined, if all time relative units are defined with 

respect to this unknown, discrete time interval [253]. Thus, demand can 

be defined in units/period rather than units/day or units/year, and costs 

are defined in $/period rather than $/day or $/year. The results of a 

simulation utilizing such an undefined discrete time interval should be 

valid for real world situations with an actual discrete time interval. 
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2. Setup costs 

Every study into the multilevel discrete and dependent demand 

environment requires a definition for the manner in which the setup cost 

is calculated and what the setup cost describes. In most of the prior 

literature, these definitions are implicit. If the definition is given 

explicitly it, almost exclusively, utilizes the standard definition given 

below. However, a few studies use the nonstandard definitions that are 

described in later sections. 

a. Standard setup cost definition In the standard setup cost 

definition, the setup cost simply refers to that cost which is incurred 

each time a machine or process is changed from the production of one 

component to the production of a different component. The setup cost 

includes the cost of lost production while the machine (process) is 

changed, the cost of the operator time while the machine (process) is 

changed if the operator is idled, the cost of any special setup personnel 

that are required, the cost of any materials that are utilized or scrapped 

as a result of the change, and the cost of initiating the change with 

respect to paper work and overhead functions [8, 160, 193]. 

The setup cost is listed in $/setup. The setup cost is fixed with 

respect to both the time that it is performed and with respect to the 

number of parts which will pass through the machine (process) using the 

new setup. To calculate the total setup cost which is incurred, simply 

multiply the number of setups by the setup cost. 
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b. Setup cost using group technology The first nonstandard setup 

cost definition describes the possible reductions in the setup cost which 

can be achieved by specifically arranging the setup order [54, 108, 120, 

222, 228], This is performed by grouping the parts which pass over a 

machine (process) into families and producing the family grouping 

together. The use of families of parts is a standard procedure in group 

technology (GT) research and applications. An example can perhaps best 

illustrate how families of parts can be used to reduce setup costs. 

Imagine a lathe which machines a high grade finish upon bar stock. 

The various parts which flow over the lathe are different in finished 

length and diameter. Table 2.4 illustrates an imaginary sample of such 

parts. Now also imagine that the setup of the machine requires 10 minutes 

to change the finished length and 15 minutes to change the finished 

diameter, and that setup time can be used to represent the setup cost. 

Finally, imagine that the machine is initially setup to produce part A, 

and that a single lot of each part is required. 

TABLE 2.4 - GT Example Data 

PART LENGTH DIAMETER 

A 6 inches 3 inches 
B 4 inches 3 inches 
C 2 inches 3 inches 
D 6 inches 2 inches 
E 4 inches 2 inches 
F 2 inches 2 inches 

It is easy to see from these data that the diameter should only be 

changed once, since this change requires more time than a change in 
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length. The processing sequence should be A-B-C-D-E-F, resulting in a 

total setup time of 65 minutes to cycle through all the parts. It is also 

easy to see that changing both dimensions at each setup will result in a 

maximum of setup time. This sequence is A-E-C-D-B-F, and results in a 

total setup time of 125 minutes or 92% more time than the optimum. 

While this simple example might not be realistic, it does illustrate 

that the order in which setups are performed can impact upon setup cost 

and through this, the total cost. In real world situations the parts are, 

probably, more diverse, with many more changing dimensions and 

requirements. However, as illustrated here, the use of GT in a multilevel 

environment can result in a decrease in total costs. 

c. Setup cost using capacity implications A third manner in 

which setup costs can be handled uses capacity implications in determining 

the applicable setup cost [4, 8, 10, 45, 145, 146, 147, 197, 204, 224, 

225, 226, 227, 243, 244]. In this method a production and manning level 

is assumed fixed for a finite period. Then all setups which can be 

performed within this production and manning level do not incur any 

variable cost. The cost of these setups only includes the cost of lost 

production, the cost of any materials that are utilized or scrapped as a 

result of the change, and the cost of initiating the change with respect 

to paper work and overhead functions. The cost of the operator and any 

setup specialists are not included in the cost of a setup, if the setup is 

performed within the assumed standard production and manning level. 
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If the setups can not be performed within the standard production and 

manning levels, the overtime cost of the operator and any setup 

specialists is added to the setup cost, forcing larger lot sizes in most 

cases. This in turn results in less setups and more actual production. 

If the setups can not be performed even utilizing overtime, a very high 

value is added to the per lot setup cost in an attempt to force the lot 

sizes to even larger numbers. 

d. Additional setup costs arrangements Two additional setup cost 

arrangements are occasionally used. The first is based upon the 

variability of setup costs with time. This could describe a situation 

where the season or production level influences the setup cost. The 

second is based upon the variability of setup costs with the quantity that 

is produced during the setup. This could describe a situation where 

tooling changes or quality control functions need to be performed on a 

regular basis. No literature reviewed used either of these setup cost 

arrangements. They are included, simply, for completeness. 

3. Holding costs 

The holding cost describes the cost which is incurred as a result of 

maintaining value in inventory [194, 199]. However, there are several 

differences in the manner in which previous studies define holding costs. 

These differences range all the way from the units that are used to 

calculate holding cost, to what exactly the holding cost represents. Each 

of these areas is covered in a following section. 
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a. Units of holding cost The total holding cost is calculated 

using the inventory counts for each item over the period of time in 

question. The discrete nature of time in an MRP system allows the 

inventory counts for each item for each period to be known at the end of 

each MRP run. The total holding cost can then be calculated by using 

either of two sets of units. 

Equation 2.1 shows the calculation of total holding cost by basing 

the holding cost directly on the inventory counts [49, 127, 129, 130, 

160]. In Equation 2.1, the inventory count in each period is multiplied 

by the cost of holding that unit in inventory for that period. Generally, 

the only time variant value in the equation is the inventory count, that 

is, H is held constant with respect to time as shown in Equation 2.2. 

P T 
THC = Z Z H[i,j] • I[i,j] (2.1) 

i=l j=l 

Or 

P T 
THC = Z E H[i] • I[i,j] (2.2) 

i=l j=l 

Where: 

H[i,j] = holding cost [part i,period j] in $/unit-inventory; 

H[i] = holding cost [part i] in $/unit-inventory time independent; 

l[i,j] = the inventory count [part i,period j] in units; 

P = the total number of parts; 

T = the number of discrete time intervals; 

THC = the total inventory holding cost in $. 
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Equation 2.3 shows the calculation of total holding cost by basing 

the holding cost on the inventory value [106]. In Equation 2.3, the 

inventory count in each period is multiplied by the cost of the item in 

that period, and this total is multiplied by the cost of maintaining 

inventory value for that part for that period. Again, H and C are usually 

held fixed with respect to time as shown in Equation 2.4. 

P T 
THC = Z Z H[i,j] • I[i,j] • C[i,j] (2.3) 

i=l j=l 

Or 

P T 
THC = Z Z H[i] • I[i,j] • C[i] (2.4) 

1=1 j^l 

Where: 

H[i,j] = holding cost [part i,period j] in $/$-inventory; 

H[i] = holding cost [part i] in $/$-inventory time independent; 

l[i,j] = the inventory count [part i,period j] in units; 

C[i,j] = the cost [part i,period j] in $-inventory/unit; 

C[i] = the cost [part i] in $-inventory/unit time independent; 

P = the total number of parts; 

T = the number of discrete time intervals; 

THC = the total inventory holding cost in $. 

Equations 2.1 through 2.4 result in the same total holding cost if 

the values assigned are consistent. The choice of the units to use can.be 

based upon convenience. However, care should be taken when the results 

developed in different studies are compared that the definitions used in 

each study are consistent. 
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b. Method of calculating inventory Three methods of calculating 

inventory counts are in use; the end of period (EOP), the average 

inventory level (AIL), and the generated part period (GPP) methods. These 

three methods can give different results for the same input data. 

However, it has been shown [129, 130] that these three method are all 

linearly related. This is shown in Equations 2.5, 2.6, and 2.7. Thus, 

the choice of a method to use to determine inventory counts can be based 

upon convenience. However, when examining the results of past studies 

care should be taken to note which of the three methods was used, so that 

results can be accurately analyzed. 

Inventory Count(GPP) = Inventory Count(EOP) (2.5) 

And 

Inventory Count(AIL) = Inventory Count(EOP) + ic (2.6) 

With: 
T 

K = Z D[i] 4- 2 (2.7) 
i=l 

Where; 

K. = difference in inventory count for the EOP and AIL methods; 

T = the number of discrete time intervals; 

D[i] = the demand in period i. 

It should be noted that the difference in inventory count for the AIL 

method («) is constant for a given total demand. If the other factors (H 

and C) are held constant over time (as shown in Equations 2.2 and 2.4), 

this means the difference in total holding cost is also a constant amount 

higher when the AIL method is used. 
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c. Total versus echelon holding cost Previous literature is 

divided into two camps with regards to how to value inventory for the 

purpose of lot sizing. The opinion of the first camp is that the 

inventory value of an item is, simply, the items replacement value [25, 

74, 77, 188, 246, 252, 255]. This idea produces inventory values which 

are, generally, monotonically increasing for an item as the item passes 

from raw material to finished good. That is, as an item becomes closer to 

the finished product, the inventory value, and thus holding cost used for 

the item increases. 

The second camp believes that the incremental increase in the value 

of an item represents the correct value to be used in lot sizing equations 

[1, 2, 3, 25, 64, 74, 77, 188, 196, 217, 236, 237, 252, 255, 258]. This 

incremental increase is termed the echelon cost of the item. The echelon 

cost does not monotonically increase, but rather is a function of the 

amount of work or material value that is added to the item at each level. 

The logic behind the use of the echelon cost is rather simple. As 

each item is processed, the only change in the inventory value is 

represented by the incremental increase in value of the item. The total 

value of the component items is a sunk cost, and, thus, should have no 

impact upon the lot sizing decision. The use of the echelon cost in lot 

sizing equations creates larger lots, since less holding cost is 

encountered for a given size of lot. 
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4. Master schedule construction 

The master schedule, or master demand array, in an MRP environment 

describes the demand inputs to the system, both with respect to quantity 

and timing, as shown in Tables 2.2 and 2.3. In order to simulate an MRP 

type environment, sample master schedules must be used. Previous studies 

have created sample master schedules from postulated data [37, 46, 67, 68, 

69, 76, 83, 111, 187, 266, 267, 271]. These postulated distributions are 

generally made through the use of random numbers. 

Postulated data can be produced to represent a number of different 

real world distributions. Two of the possible types of postulated 

distributions are: 

• Distributions which simulate random arrivals from a single calling 

distribution. 

• Distributions which simulate random arrivals from two or more 

calling distributions with only one active at a time. 

The first type of postulated distribution represents demands which 

• arise from a single source. The source of the demands is active at all 

times and the distribution of demands remains the same over time. 

The second type of postulated distribution represents demands which 

come from two sources. First one source is active for a period of time 

and then the second source is active. This could represent the situation 

where product is made for both customer order and finished goods 

inventory. When the product is made for finished goods inventory, a 
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higher rate demand distribution would be in effect. This demand 

distribution would remain in effect for a period of time and then the 

lower rate distribution would remain in effect for a subsequent period of 

time. 

5. Capacity restrictions 

A large number of previous studies into the MRP environment do not 

consider capacity restrictions. They assume that capacity is unlimited 

and investigate other aspects of the environment. Of course any real 

world situation would have some type of capacity restriction, and not 

including them in a simulation would represent a simplification of the 

problem. 

Of those studies which do include capacity restrictions, a number of 

different treatments are available. The inclusion of any type of capacity 

restriction represents the addition of more data into the simulation. So 

not only is the simulation itself more complicated, but the design of the 

simulation data is also complicated by the requirement for the design of 

these additional data. 

The most basic type of capacity restriction is the limiting of the 

amount of production which can be performed in any one period [5, 10, 16, 

18, 24, 26, 28, 29, 31, 32, 33, 43, 75, 89, 93, 102, 123, 151, 160, 161, 

162, 165, 166, 167, 189, 191, 192, 202, 224, 242, 243, 244]. This places 

a constraint on the number of items of each type which can be produced in 

any period. In order to simulate this type of constraint, machine and 
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setup times for each item in the system must be developed, as well as 

establishing a maximum of production time for each machine. The maximum 

production time is sometimes allowed to fluctuate with overtime 

surcharges. 

A second type of capacity restriction is the limiting of total 

inventory value in the system [4, 5]. This places an economic constraint 

on the system. In order to simulate this type of constraint, the per item 

cost of all items must be known, as well as the ceiling for inventory 

value. The ceiling is sometimes allowed to increase under a specified 

cost penalty. 

A third type of capacity restriction is the limiting of total 

inventory space requirements. In order to simulate this constraint, the 

size of each item must be known, as well as the total amount of space 

available. Extra space can sometimes be rented at a increased cost. 

Of course any of these restrictions can be used in combination with 

other of the restrictions. In a real world situation, all of the 

restrictions probably apply, and a model which includes all three would be 

the most realistic. However, a model including all three is much more 

complex, is much harder to develop realistic data for, and is also much 

harder to validate. 

6. Product structures and cost ratios 

The product structure defines the manner in which component parts are 

utilized in producing parent items. In an MRP environment, the product 
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structure is, generally, called the bill of materials (BOM). The BOM 

contains information on, both, the structure type and the component 

quantities. The cost ratio of an item defines the relationship between 

setup and holding costs for the item. They are included in the same 

discussion because their use in a simulation is highly intertwined. 

a. Product structure types There are two main types of product 

structures [15, 25, 26, 40, 41, 43, 44, 159, 194, 195, 196, 206, 210, 217, 

236, 237, 244, 246, 247, 248, 258]. Figure 2.1 shows a sequential product 

structure and Figure 2.2 shows a assembly structure. In both figures, the 

finished product is at the top, and the components flow into this finished 

product. 

FIGURE 2.1 - Sequential Product Structure 

The sequential product structure defines a product which is produced 

without branching subcomponents. This product is produced from a single 

piece of raw material and modified into the finished product through a 

series of production steps. The assembly product structure defines an 

Raw Material 

Component Parts 

Finished Product 
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Raw Material 

Component Parts 

Finished Product 

FIGURE 2.2 - Assembly Product Structure 

item which is produced by assembling a group of components into a finished 

product. Each of the components can in turn have sequential or assembly 

types of structures. There are, of course, an unlimited number of 

assembly type structures -possible. 

Previous studies have generally investigated both types of product 

structures. Usually, preliminary investigations are performed on the 

sequential structure and then the results of these investigations are 

extended to see how they perform in the more complex assembly structure. 

There are, however, a group of studies which have limited their 

investigation to the sequential structure. In general, the results of 

these studies cannot be extended into an assembly structure. 

b. Component quantities In addition to the type of structure, 

the quantity of each component that is required per finished product must 

be included in the product structure data. In early studies, the quantity 

of each type of component that is required was assumed to be an important 
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design criterion for the simulation. However, in recent studies, this 

area has been greatly simplified by assuming that all components are 

required in quantities of 1 and then allowing only the cost ratios to 

change [1, 43, 179, 180, 181, 194, 195, 196]. 

For example, returning to the toy wagon which was described earlier, 

each finished wagon requires four wheel/tire subassemblies. However, the 

quantity questions can be simplified by requiring only one set of four of 

these wheel/tire assemblies per finished wagon. Then all definitions 

should be created on the basis of this set as opposed to the individual 

component items. 

c. Cost ratios The cost ratio of an item is determined as shown 

in Equation 2.8. The cost ratio defines the ratio of setup cost to 

'holding cost [40, 41, 44, 67, 68, 69, 76, 159, 196, 246, 271]. The cost 

ratio is a primary input in most lot sizing methods. In most previous 

studies, the cost ratio is time independent, and this simplifies the cost 

ratio to Equation 2.9. Of course if the component quantities are all 

assumed to be one as described in the previous section, the cost ratio 

should be listed in term of sets rather than in terms of actual component 

items. The holding cost shown in Equations 2.8 and 2.9 use the same 

definitions as Equations 2.1 and 2.2. 

R[i,j] = S[i,j] + H[i,j] (2.8) 

R[i] = S[i] + H[i] (2.9) 

Where : 

S[i,j] = setup cost [part i,period j] in $/setup; 
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H[i,j] = holding cost [part i,period j] in $/unit-inventory; 

R[i,j] =• the cost ratio [part i,period j] in units/setup; 

S[i] = setup cost [part i] in $/setup time independent; 

H[i] = holding cost [part i] in $/unit-inventory time independent; 

R[i] = the cost ratio [part i] in units/setup time independent. 

Very little has been said about the values of the cost ratios. They 

can increase or decrease throughout the product structure. While cost 

ratios are used in lot sizing methods, they are not generally used in the 

overall objective function. Usually, the holding and setup costs are 

simulation inputs and the cost ratios are calculated from these values. 

7. Scrap, rework, and safety stock 

. Scrap and/or rework define the situation where the number of items 

put into a process is more than the number of items which are produced by 

the process. Scrap differs from rework in that the parts are lost for 

good, whereas in rework additional processing can return the parts back to 

the system, generally in a later period. Scrap/rework in a real world 

situation can be the result of bad design, processing, or material. A 

number of previous simulations have investigated the implications of scrap 

and rework [116, 135, 158, 186]. Generally, these studies assume a yield 

distribution for each item and use random number generators to develop 

scrap/rework quantities for each lot. 

When scrap/rework is present in a system, the number of finished 

components that each process will produce is unknown. This introduces a 
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randomness into the environment. Usually, this randomness is handled by 

introducing safety stock into the system [5, 49, 52, 66, 70, 82, 83, 96, 

116, 135, 141, 152, 160, 161 , 251, 254, 262, 264, 270]. Safety stock is 

inventory that is held in order to satisfy the randomly scrapped items so 

that the master production schedule can be satisfied. 

Safety stock costs money through the cost of holding the items in 

inventory when they are not required. On the other hand, not having 

enough safety stock on hand can produce stockouts. These stockouts are 

usually assigned a stockout cost, either in terms of a per item short cost 

or a per stockout cost. The optimum safety stock is determined by 

minimizing the safety stock holding cost and stockout costs. 

Safety stock can also be used to satisfy demands which arise outside 

the normal MRP system. These could be such things as replacement parts, 

parts used for testing, etc. Very few previous simulations have used 

demands which are outside the normal MRP system, and these types of safety 

stocks are rarely investigated. 

8. Component lead times 

Component lead times describe the amount of time that is required for 

a component item to be processed at the preceding stage [28, 66, 67, 68, 

69, 126, 143, 172, 173, 212, 214, 240, 268, 269]. For example, returning 

to the toy wagon, if the lead time for handles is 1 week and 100 wagons 

are to be assembled in week lO, the handles must be started in week 9. If 
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the component lead time was 2 weeks, the handles would need to be started 

in week 8, etc. 

Component lead times are used to cover the amount of time that is 

actually spent in processing, the amount of time that the components spend 

in a queue awaiting processing, and any transportation time. In most 

previous studies, the component lead times have been a major design 

criterion for the simulation. However, some recent studies have assigned 

all component lead times to zero [1, 15, 40, 41, 44, 49, 179, 180, 181, 

203, 218], 

The logic behind assigning all component lead times to zero is 

straightforward. In MRP, each component lead time is assigned a value by 

the administrator. Thus, since all items spend a component lead time at 

the process, the costs associated with the component lead time are 

nonvariable and do not need to be optimized. These costs are simply 

excluded from the simulation. 

However, other studies attempt to design logic which minimizes 

component lead time by minimizing the queue time [1, 16, 29, 31, 45, 48, 

60, 66, 91, 124, 146, 147, 173, 189, 192, 212, 225, 226, 240, 244, 245, 

264, 268, 269]. The results of these studies are schedule based systems 

which determine the optimum lead times as well as the optimum lot sizes. 

Optimizing the lead times complicates the simulation to a large degree and 

requires that capacity utilization data also be included in the 

simulation. 
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9. Rolling horizon effects 

In an MRP environment, as time passes, the current demands become 

history and new demands are added to the far end of the master schedule. 

This process is known as a rolling horizon. In a rolling horizon 

environment only the decision about the current period is implemented, the 

horizon is then rolled forward one period, and the decision process 

reperformed. Previous studies have handled the rolling horizon nature of 

MRP differently. 

A number of studies have, simply, ignored the rolling horizon aspect 

and treated the problem as a fixed horizon problem. This simplifies the 

problem considerably, however the results developed in these studies might 

not be directly applicable to a real world problem. A number of other 

studies have examined the effect that the length of the planning horizon 

has on the performance of the various lot sizing methods [4, 9, 38, 39, 

50, 62, 134, 149, 150, 234]. Finally, some studies have attempted to 

negate the rolling horizon by utilizing assumed demands at the end of the 

master schedule [65]. 

10. System nervousness 

Whenever the master schedule is changed in an MRP system, the changes 

cascade down through the demands for the various components. The effect 

of these changes is known as system nervousness. A system is highly 

nervous if a small change in the master schedule results in numerous 

changes in the component lot sizes and/or lot timings. A number of 
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authors have investigated system nervousness [35, 36, 63, 71, 77, 94, 116, 

131, 141, 155, 169, 175, 229, 251, 261, 270]. 

One common recommendation of preceding studies is to freeze the first 

few periods in the master schedule, only allowing changes in periods 

farther in the future. Other studies attempt to locate changes that can 

be made without creating a large cascading effect. A few authors study 

the interaction between changing lot sizes and changing lot timing. 

Finally, some authors investigated the effects and costs of maintaining 

safety stocks in order to minimize system nervousness. 

11. The integer principle 

As items flow through the MRP system, they flow in the form of lots. 

As these lots flow into and out of each level in the BOM, they can 

interact with lots of the same items which are adjacent in time. The 

integer principle outlines these possible interactions. According to the 

integer principle, lots are only joined in integer numbers. Wagner and 

Whitin proved the optimality of the integer principle for single level 

discrete demands (theorem 1) [253]. A recent extension of this proof was 

created for the MRP environment [64, 265], while other authors have 

designed cases where the integer principle is purported to not work [238]. 

Most of the recent studies have utilized the integer principle [15, 31, 

64, 72, 77, 79, 179, 180, 181, 196, 203, 238, 265]. 

Using the integer principle, only three types of interactions are 

allowed, as shown in Figures 2.3, 2.4, and 2.5. In these figures, each 
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horizontal line represents one stage of production, the instantaneous 

state changes which occur at the discrete time boundaries are the vertical 

lines, time is nn the horizontal axis, and the nodes represent lots. The 

finished product is at the top of the figure, and the items flow from 

bottom to top (raw material to finished good) and from left to right 

(increasing time). 

FIGURE 2.3 - Lot For Lot Sequencing 

Figure 2,3 shows lots flowing in a lot for lot (LFL) fashion through 

the system. Once a lot size is determined, it remains in effect as long 

as this LFL sequencing pattern is used. 

Figure 2.4 shows lots in a joint sequencing pattern. Here two 

adjacent lots of parent items are joined into one lot of subcomponent 

items. This could occur at any level and more than two lots could be 

joined. The term joint sequence is derived by looking at the lots from 

the top of the system (finished product) toward the bottom (raw 

materials). 

Level x+3 

Level x+2 

Level x+1 

Level X 

Time -* » 
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FIGURE 2.4 - Joint Sequencing 

Level X 
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FIGURE 2.5 - Split Sequencing 

Figure 2.5 shows lots in a split sequencing pattern. Here a single 

lot of parent items are split into two lots of subcomponent items. Again, 

this splitting can occur on any level and in quantities other than one 

into two. Again, the term split sequencing can be visualized by looking 

at the lots from top to bottom. 
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FIGURE 2.6 - Noninteger Sequence 

Figure 2.6 shows a situation which does not follow the integer 

principle. Here the lots both join and split at the same time. The 

integer principle states that this would never occur in an optimum 

solution to the MRP lot sizing problem. 

12. Collapsing the problem space 

A recent study has attempted to expand the integer principle to 

include a method of collapsing the solution space by finding nodes that 

will never react other than in a LFL manner [15]. The key to finding 

these nodes is through the cost ratio (Equations 2.8 and 2.9). According 

to their study, if the cost ratio decreases from parent to component, the 

lots will never be joined as shown in Figure 2.4. 

When this situation occurs, the component items can be collapsed into 

the parent item for lot sizing purposes. The setup costs and holding 

costs for the levels are then added to form a single setup cost and 
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holding cost for the collapsed group of items. Their study included tests 

which allow, both, sequential and assembly structures to be collapsed. 

The authors used the echelon method for calculating holding costs. 

13. Lot sizing models 

Lot sizing the component demands in MRP controls the manner in which 

the joining and splitting of lots shown in Figures 2.3, 2.4, and 2.5 is 

performed. The object of lot sizing is the minimization of variable 

costs. The variable costs afe, generally, assumed to be the setup cost, 

holding cost, safety stock cost, and shortage cost. This section 

describes the major methods that have been used in the attempt to minimize 

these variable costs [81]. 

a. Multiple passes with a single level heuristic The simplest 

manner in which lot sizes are developed in a MRP environment is to use one 

of the plentiful single level heuristics on each individual level. In 

this dissertation, this method is called the multipass single level (MPSL) 

method. The MPSL method was presented along with the original description 

of MRP [194]. A number of studies have evaluated which single level 

heuristics work best in the multilevel environment [25, 26, 30, 67, 68, 

69, 79, 82, 138, 159, 173, 179, 180, 181, 185, 246, 258, 271]. 

The most important studies which analyze the MPSL method, and their 

results are shown in Table 2.5. The columns in Table 2.5 show if the 

studies were capacity constrained, if the end item demands varied, if the 

study used echelon or replacement (total) holding costs, if serial and/or 
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assembly product structure types were investigated, if the results were 

compared to the optimum solution, if a new heuristic was presented, and if 

the study used the integer principle. The final column lists the 

recommendation that the authors present as a result of the study. Only 

the primary author is listed in Table 2.5, for a complete reference please 

see the bibliography. 

As Table 2.5 shows, the studies which investigate the use of MPSL 

method reach no general consensus. Usually, these studies recommend 

certain heuristics for low level items and other heuristics for high level 

items. The recommended heuristics often change when the input parameters 

change. Thus, one combination of heuristics might be recommended for 

highly variable demand and a different set for demands which are fairly 

constant. Other factors such as the cost ratios, the type of structure, 

or capacity constraints can also affect the recommendation. Of those 

studies that made a single recommendation, the periodic order quantity 

(POQ) heuristic was recommended, the single level Wagner-Whitin (SL-WW) 

algorithm was recommended, and two studies recommended new heuristics. 

b. Modified single level heuristics A different attack on the 

MRP lot sizing problem entails the development of new multilevel 

heuristics [2, 40, 41, 43, 44, 57, 74, 76, 90, 115, 138, 171, 196, 202, 

207, 258]. These heuristics tend to be modifications of the heuristics 

which work well on the single level problem. In this dissertation, these 

are called modified single level (MSL) heuristics. Usually, the MSL 

heuristics modify the cost ratio in some manner in the attempt to achieve 
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TABLE 2.5 - Multiple Passes with Single Level Heuristics 

CAPACITY VARIABLE HOLDING COST STRUCTURE OPTIMAL 

STUDY CONSTRAINED DEMAND ECHELON TOTAL SERIAL ASSEMBLY SOLUTION 

Benton [24, 25] no yes yes yes yes yes no 

Biggs [29] yes yes ? ? yes no no 

Choi [62 - 64 ] no yes no yes no yes no 

Collier [71] yes yes ? ? no yes no 

Crowston [74] no no yes no no yes yes 

LaForge [146, 228] no yes no yes no yes no 

Melnyk [157] yes yes ? ? yes no no 

Moilly [163 - 165] no no yes no yes yes yes 

Nandakumar [169] no yes ? ? ? ? no 

Yelle [253] no yes ? ? no yes no 
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e Level Heuristics 

E HOLDING COST STRUCTURE OPTIMAL NEW 

HEURISTIC 

INTEGER 

PRINCIPLE RESULTS 

E 

ECHELON TOTAL SERIAL ASSEMBLY SOLUTION 

NEW 

HEURISTIC 

INTEGER 

PRINCIPLE RESULTS 

yes yes yes yes no no yes various 

? ? yes no no no ? various 

no yes no yes no no 7 POQ 

? ? no yes no no ? various 

yes no no yes yes yes yes new 

no yes no yes no no ? SL-WW 

? ? yes no no no ? various 

yes no yes yes yes yes yes new 

? ? 7 ? no no ? various 

7 ? no yes no no ? various 
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more cost effective solutions. They differ from the single level 

heuristics in that they utilize information from multiple levels in each 

pass through the master production schedule. 

The most important studies which include MSL heuristics and their 

results are shown in Table 2.6. The columns in Table 2.6 are the same as 

the columns in Table 2.5, with one exception. The next to last column 

shows if the study included MPSL heuristics. 

As shown in Table 2.6, the MSL heuristics dominate the MPSL 

heuristics. All of the studies but three find that the MSL heuristics 

performs in a more effective manner. One study recommends that the 

optimum solution be utilized, while two studies state that the results 

still depend upon input parameters. 

c. Optimum solutions The final method of attacking the MRP lot 

sizing problem is the development of models which provide an optimal 

solution [3, 33, 57, 72, 79, 170, 179, 180, 181, 201, 203, 217, 231, 232, 

236, 239, 247, 248]. Generally, these models work on a fixed horizon 

problem, however some make attempts to modify the end of horizon data for 

better solutions. These models work in a number of different manners. 

The most important studies and their results are shown in Table 2.7. 

A number of the studies which describe MPSL and MSL heuristics 

include an optimum solution method. These methods are, usually, one of 

the methods shown in Table 2.7. Of these methods, a number work only on 

the constant demand problem or only on the serial structure. 
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TABLE 2.6 - Modified Single Level Heuristics 

CAPACITY VARIABLE HOLDING COST STRUCTURE OPTIMAL r 

STUDY CONSTRAINED DEMAND ECHELON TOTAL SERIAL ASSEMBLY SOLUTION HEUI 

Afentakus [ 2 ]  no yes yes no ? yes yes 3  

Blackburn [ 3 7 ,  3 8 ,  
4 0 ,  4 1 ]  

no yes yes no yes yes yes 3  

Cadambi [ 5 2 ]  no no no yes yes no no 3  

Cole [ 6 9 ]  no no yes no ? yes yes 3  

Dresner [ 8 4 ]  yes no no yes yes no no 3  

Goyal [ 1 0 7 ]  no no no yes yes no no y 

Jacobs [ 1 2 9 ]  no yes ? ? no yes yes 

McLaren [ 1 5 6 ]  no yes no yes yes yes no y 

Peng [ 1 8 0 ]  no yes no yes no yes yes y 

Ramsay [ 1 8 6 ]  yes yes no yes yes no yes y  

Rehmani [ 1 9 0 ]  no yes no yes 7  ? no y  

Wemmeriov [ 2 4 0 ]  no yes yes yes yes yes no 
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TOTAL 

STRUCTURE 

SERIAL ASSEMBLY 

OPTIMAL 

SOLUTION 

NEW 

HEURISTIC 

INTEGER 

PRINCIPLE MPSL RESULTS 

no yes yes yes yes no new 

no yes yes yes yes yes no various 

yes yes no no yes no new 

no yes yes yes yes no optimum 

yes yes no no yes no no new 

yes yes no no yes no no new 

no yes yes no yes new 

yes yes yes no yes yes yes new 

yes no yes yes yes yes no new 

yes yes no yes yes no new 

yes no yes no new 

yes yes yes no no yes yes various 
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TABLE 2.7 - Optimum Solutions 

CAPACITY VARIABLE HOLDING COST STRUCTURE INTEGER 

STUDY CONSTRAINED DEMAND ECHELON TOTAL SERIAL ASSEMBLY PRINCIPLE SC 

Af entakus [3] no yes yes no ? yes yes La 

Billington [32] yes yes yes no ? yes ? La 

Clark [67] yes yes no yes yes yes yes En 

Prentis [185] no yes ? ? ? yes 7 Br 

Rao [187] no yes no yes 1 yes yes Ne 

Schwarz [199] no no yes no yes yes yes Br. 

Steinberg [213] yes yes no yes ? yes no Ne 

Taha [221 ] yes no no yes yes no yes Em 

Vickery [229, 230] yes yes ? ? yes no no Mi: 
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HOLDING COST STRUCTURE INTEGER 

ECHELON TOTAL SERIAL ASSEMBLY PRINCIPLE SOLUTION TYPE 

yes no ? yes yes Lagrangean Relaxation 

yes no ? yes ? Lagrangean Relaxation 

no yes yes yes yes Enumeration 

? ? ? yes ? Branch and Bound 

no yes 7 yes yes Network 

yes no yes yes yes Branch and Bound 

no yes ? yes no Network 

no yes yes no yes Enumeration 

? ? yes no no Mixed-Integer 
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14. Real world results 

The final group of studies present evaluations of actual MRP systems. 

These studies tend to be general and opinionated. A number of these 

studies present favorable findings [55, 59, 92, 124, 190, 193, 195], while 

a number of other studies present poor findings [59, 80, 107, 156, 168, 

211, 213 215, 263]. The general consensus is that MRP has not worked as 

well as originally hoped, however it has worked better than any other 

system currently available. 

D. Additional Multilevel Discrete Demand Environments 

Three additional environments have been proposed in recent years in 

an attempt to replace MRP systems. These are the KANBAN system, the OPT 

system, and the just in time (JIT) system. While each of these systems 

have their place, none have replaced MRP systems as the planning norm. 

1. KANBAN system 

The KANBAN system works through a series of cards which represent 

lots [12, 23, 34, 61, 85, 117, 121, 154, 163, 178, 205, 216]. When a lot 

is used, a card is freed and sent to the preceding station in order to 

initiate a new lot of the same item. Thus, the KANBAN system attempts to 

keep a certain level of inventory moving through the system at all times. 

This process works fine for stable production levels. However, when 

the production levels change, what number of KANBANS should be on the 
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floor? In general, some type of planning system must coordinate the 

KANBAN system, and often it is MRP. 

2. Just in time (JIT) system 

Just In Time (JIT) is not really a environment, but rather a 

philosophy [6, 12, 21, 34, 56, 61, 85, 98, 101, 109, 119, 121, 125, 157, 

163, 197, 198, 200, 216, 223, 227, 243, 249, 250, 252, 255]. JIT states 

that no inventory at all should be held. Of course this is quite 

impossible in most manufacturing situations. What JIT really does is 

highlight those areas that have the best cost to return ratios. 

For example, in order to reduce inventory JIT tends to focus on 

reducing setup costs so that lots can be smaller. However, if the lower 

setup costs had been created without JIT, an MRP system should also have 

produced smaller lot sizes. 

3. OPT 

OPT is a proprietary product that has received a lot of attention in 

recent years [101, 109, 110, 137, 198, 235, 249]. OPT focuses on 

identifying the bottlenecks in the production system and maximizing the 

production through these bottlenecks. The OPT system is, thus, similar to 

JIT in that it focuses where the highest yields are. 

In other manners, OPT is similar to MRP. Both explode the BOM into 

component demands and time phase these demands. OPT is perhaps more like 

an example of the optimum solutions for the MRP environment described in a 
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preceding section than is sometimes advertised. However, the logic of the 

system is maintained as a trade secret and no real comparisons have been 

published. 
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III. PROBLEM DEFINITION 

The problem addressed in this dissertation is the optimization of a 

simulated MRP environment with respect to variable lot sizing costs. This 

overall problem is attacked by subdividing it into three major elements. 

These three elements are: 

• The development of an underlying MRP model 

• The construction of a simulation of this underlying MRP model. 

• The optimization of the lot sizing logic used in the MRP model. 

The first step to be performed in any simulation is the development 

of the simulation model [17, 19, 20, 73, 78, 86, 132, 136, 140, 144, 164, 

176]. This model should accurately reflect the real world that it is 

attempting to replicate, while omitting those portions of the real world 

problem that are extraneous to the area of analysis. As shown in the 

preceding chapter, there have been a large number of differing MRP model 

assumptions used in previous studies of the MRP environment. The next 

chapter describes the assumptions under which the model developed in this 

research operates. 

The second problem to be addressed is the construction of a 

simulation of the developed MRP model. This simulation should allow the 

model to be tested on a variety of input data. Since the simulation 

performed in this dissertation is digital, this portion reduces to 

basically a software development and testing problem. This element of the 

overall problem analysis is not discussed directly in this dissertation. 
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The third step is the optimization of the lot sizing logic used in 

the MRP model. In order to judge the efficacy of the lot sizing logic, 

the results are compared with those developed by previous lot sizing 

methods. Thus, lot sizing methods presented in previous research are also 

simulated, with the results of the various lot sizing methods compared and 

any weakness of the new lot sizing logic explored. This third element of 

the overall problem analysis is contained in Chapter V. 
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IV. DEVELOPMENT OF MRP MODEL ASSUMPTIONS 

As shown in the literature review, previous studies into the MRP 

environment have utilized a large number of differing assumptions. This 

chapter examines these assumptions and describes how they are utilized in 

this dissertation. This description can include an analysis of the 

effects that the assumptions can have on the developed MRP model and 

resulting simulation. 

The first section in this chapter lists those areas in which a 

specific assumption is adopted without a thorough analysis. These 

represent assumptions common to the majority of previous studies, or 

assumptions which cover areas not investigated in this dissertation. The 

second section lists those areas in which various possible assumptions are 

investigated. In general, an analysis of the various possible assumptions 

which cover an area is performed with the result being the adoption of one 

of these possible assumptions for the MRP model developed in this 

dissertation. 

A. Assumptions Adopted Without Analysis 

This section lists those areas in which a specific assumption is 

adopted without an indepth analysis. These assumptions are either 

utilized by a large percentage of previous studies or describe portions of 

the MRP environment which are not analyzed in this dissertation. 



www.manaraa.com

47 

1. Discrete time and discrete demand 

The demand data in this dissertation are presented in the terms of 

units per period. The length of the period remains undefined. All input 

data and results are presented in this form. 

Note, that the use of an indefinite period does not mean that the 

choice of a discrete time period is unimportant in a real world 

environment. The use of an undefined period is simply a simulation 

abstraction that allows results to be developed independent of a fixed 

time unit base. All real world implementations should analyze the problem 

of setting a period length before attempting to utilize these simulation 

results. 

2. Setup cost 

The setup cost definition utilized in this dissertation is the same 

as the standard definition described in the literature review. The setups 

are time independent. No group technology or capacity implications are 

examined. 

3. Master schedule construction 

The master schedules utilized in this dissertation are developed 

using computer generated random numbers. A random number generator which 

satisfies common statistical tests is utilized. The demand distributions 

represent, both single sources of demand and more complex demand patterns. 
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4. Capacity restrictions 

No capacity restrictions are included in this dissertation. 

Production quantities, capital, and inventory space are all assumed 

infinite. This simplifies, both, the development of the model and the 

construction of the simulation data. The results of the simulation need 

to be reconciled with the restricted real world environment prior to their 

actual usage. 

5. Scrap, rework, and safety stock 

The problems associated with scrap, rework, and safety stock are not 

addressed in this dissertation. Like capacity restrictions, the inclusion 

of these factors greatly complicates the model and requires that time be 

taken away from the study of other areas. Again, the results developed in 

the simulation need to reconciled with the real world before the results 

can actually be applied. 

6. Component lead times 

The component lead times in the simulation are all assumed to be zero 

as is common with most recent simulations. This has no effect on the 

simulation results. However, real applications should take great care in 

setting the lead times. As discussed by a number of authors, the 

determination of lead times is a parameter that greatly affects the 

results of real world MRP systems. 
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7. System nervousness 

The issue of system nervousness is not included in the simulation 

model. This issue requires that the safety stock and capacity issues also 

be addressed. This, in turn, requires that data be developed on 

scrap/rework rates, shortage costs, and system capacity. 

8. Product structures and cost ratios 

Both the sequential and assembly product structure are utilized in 

the simulation. For both structures, the components are always required 

in one to one ratios (sets). 

Cost ratios are used only indirectly in this dissertation. As shown 

in the later section which describes collapsing the problem (lV.B.3.b), 

cost ratios can be used to determine inventory levels which are never 

handled by the optimum solution in other than a lot for lot manner. These 

inventory levels can then be collapsed into adjacent levels. In general, 

cost ratios which result in such collapsed problems are not analyzed. 

B. Assumptions Adopted After Analysis 

This section lists areas in which various assumptions are 

investigated in conjunction with the development of the MRP model. In 

general, these areas need to be investigated because previous studies have 

used differing and opposing assumptions in developing an MRP model. After 

investigating the various assumptions possible for an area, an assumption 

is adopted for the remainder of this study. 
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1. The integer principle 

The integer principle describes the manner in which lots of items are 

joined and split as they pass through the various inventory levels. The 

three types of interactions allowed by the integer principle are shown in 

Figures 4.1, 4.2, and 4.3. An interaction of lots which does not follow 

the integer principle is shown in Figure 4.4. All four of these figures 

were originally shown in Chapter II. 

FIGURE 4.1 - Lot For Lot Sequencing 

A simple examination of Figure 4.4 shows that handling lots in a 

manner not consistent with the integer principle must result in excess 

costs. The number of setups and the amount of holding costs generated 

would both be reduced by producing all the parts in levels x+2 and x+3 in 

a single lot and timing this lot consistent with the second lot. This 

would result in a joint sequence as depicted in Figure 4.2. 

Level x+3 

Level x+2 

Level x+1 

Level x 

Time •* <» 
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Level x 

Level x+1 

Level x+2 

Level x+3 

Time -* » 

FIGURE 4.2 - Joint Sequencing 

Level X 

Level x+1 

Level x+2 

Level x+3 

Time » 

FIGURE 4.3 - Split Sequencing 

A review of studies which do not use the integer principle, reveals 

that these studies fall into two types. First, those studies which were 

performed prior to the advent of the integer principle. Second, studies 

which are not discrete in nature. Since this dissertation is discrete the 

integer principle is obeyed. 
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Level x+1 

Level x+2 

Level x 

O U Level x+3 

Time •* = 

FIGURE.4.4 - Noninteger Sequence 

An additional fact related to the integer principle can also be 

observed by examining Figure 4.3 (split sequencing). This fact is simply 

that split sequencing of lots will always result in excess costs. For 

example, in Figure 4.3 the number of setups and the amount of holding 

costs are both higher because there are two lots at levels x+2 and x+3. 

The fact that split sequencing always results in excess costs is not 

generally recognized. 

Thus, there are only two possible methods in which lots can interact 

as they pass through the inventory system and still result in a minimum of 

total costs. These are the lot for lot method as shown in Figure 4.1 and 

the joint sequencing shown in Figure 4.2. All other interactions must 

result in higher total costs. 

Before leaving this subject, a brief caveat is probably required. 

Simply put, this warning is that factors other than minimizing total cost 
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could require that split or noninteger lot sequencing be used in an actual 

MRP system. Some possible reasons include capacity restrictions, redrawn 

master schedules, scrap problems, and inventory space restrictions. 

However, since these areas are used in this dissertation, only the joint 

and lot for lot sequencing patterns will be studied. 

2. Holding costs 

As described in the literature review, there are a number of 

conflicting ideas surrounding the use and meaning of holding costs. The 

first area of conflict is the method used to determine inventory levels. 

However, as shown earlier, the three major methods (end of period, 

generated part period, and average inventory level) are all linearly 

related and thus somewhat interchangeable. This dissertation utilizes the 

end of period (EOP) method for both optimization and cost development. 

As also shown earlier, there have been two methods in which the 

inventory levels have been changed into holding costs. These methods are 

shown in Equations 2.1 through 2.4, and represent holding costs based upon 

inventory counts or inventory value. Also, the holding cost can be time 

dependent or time independent. In this dissertation, the inventory cost 

is time independent and is based upon the inventory count. Thus, holding 

costs are developed as shown in Equation 2.2. 

Finally, there have been two major methods in which the per part 

inventory holding cost (H in Equations 2.1 through 2.4) has been valued. 

These are the replacement cost and incremental (echelon) cost. The 
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remainder of this section analyzes which of these two methods is better 

and how these methods are used in in this study. However prior to this 

investigation an additional caveat is probably required. 

This dissertation examines only variable holding costs. As described 

earlier, component lead times are set to zero throughout this study. In a 

real MRP system the lead times would of course not be zero and these lead 

times would develop actual holding costs. However, these holding costs 

are nonvariable with respect to lot sizing and are, thus, of no interest 

to this study. 

Of final note is the fact that, in this study, the lot for lot method 

of sequencing never generates any holding costs because of the zero lead 

times. Thus, holding costs are generated only when the joint lot 

sequencing pattern is used. These holding costs then represent only the 

variable holding costs of a real world MRP system. 

a. An argument for replacement costing As stated above, variable 

holding costs are created, only, when the joint lot sequencing pattern 

(Figure 4.2) is used. By studying this figure, it is easy to see the 

argument for using replacement cost in calculating the holding cost. 

When a multipass single level (MPSL) heuristic is used to lot size in 

an MRP environment, the finished product level is the first level 

processed. The next level for which lots are developed contains the 

immediate subcomponents. Thus in Figure 4.2, level x is lot sized first 

with the resulting lots becoming the demands in level x+1, etc. If the 
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joint sequencing pattern is formed in this situation, the result is that 

items are moved back in time (earlier) in the inventory system. 

For example, in Figure 4.2 at level x+2 and level x+3 all items are 

processed in the same lot. Thus the processing for the items from the 

second lot in levels x and x+1 has been moved to an earlier time than 

would be absolutely necessary. The end result is that these items have 

been held in inventory for an excess amount of time, with the amount of 

time equal to the time difference between the two lots. Holding these 

parts in inventory in turn generates variable holding costs. The amount 

of holding costs is related to the replacement cost of the items at level 

x+2, with this relationship described by the holding cost (H) parameter. 

This logic for using the replacement cost for an item in calculating 

the holding costs is a direct extension of the earlier single level 

studies. The logic is valid if the lot sizes are decided by working level 

by level from the top (finished product) of the MRP system. Once an item 

is moved backward in the inventory system, the item can never be moved 

forward to the original time sequence. Thus, all subcomponents (including 

raw material purchases) would have to be moved backwards with the end 

result being increased holding costs proportional to the replacement cost 

of the lot sized component, again with this relationship described by H in 

Equation 2.2. 

b. An argument for incremental costing A somewhat similar, but 

opposite, argument is available for using the incremental cost of an item 

in constructing the H parameter and thus calculating the variable holding 
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costs. This argument assumes that the lot sizes are calculated from the 

bottom (raw material level) up through- the MRP system. Again, variable 

holding costs are generated, only, when the joint lot sequencing pattern 

(Figure 4.2) is used. 

Imagine for example, that the lot size at levels x+3 and x+2 is known 

in Figure 4.2 and the lot size at level x+1 is to be determined. The lot 

sizing process should offset the increased setup costs with the savings in 

holding costs which would be generated by splitting (joining when looking 

from the top) the lot. The viable holding cost to use would then reflect 

the incremental difference between holding the parts at level x+2 and 

level x+1. Since the parts are already at level x+2 no holding cost 

savings can be achieved for the parts at that level. 

Most previous studies that have utilized the echelon cost have used 

this cost for only the level at which the lot sizing is being performed. 

However, by studying Figure 4.2 it can be seen that viable holding cost is 

actually the difference between the replacement cost at the level at which 

the lot sizing is being performed (level x+2) and the finished product 

(level x). This is due to the fact that the items must be held in 

inventory and the only change is whether they should be held at the 

intermediate level (x+2) or a higher level (x). Note that the difference 

in replacement value at the two levels is, probably, related to the sum of 

the echelon costs between the two levels. 

c. Conclusions As described above, there are viable arguments 

for using both the replacement cost and incremental cost in the 
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development of the H parameter used to calculate lot sizes. The choice of 

which to use depends upon which way the model is being worked. If the lot 

sizes are calculated from the top (finished product) down, the replacement 

cost should be used. If the lot sizes are calculated from the bottom (raw 

material) up, the incremental holding cost should be used. In either 

case, only the joint lot sequencing pattern. Figure 4.2, creates variable 

holding costs. 

When the holding costs which are generated by a lot sizing plan are 

calculated, the replacement cost value for each item should always be 

used, since the items held in inventory represent an inventory value equal 

to the replacement cost. This is true whether the parts are held due to 

lot sizing calculations performed from the bottom or top of the MRP 

system. 

In this dissertation, all lot sizing models operate from the top to 

the bottom of the MRP system. Thus, only replacement cost valuation is 

included in the study. Of course, the holding costs for the developed lot 

sizing plans are calculated using replacement cost valuation. 

3. Collapsing the problem 

The idea of collapsing the problem is relatively new to the study of 

MRP environments. In the past, problems have been collapsed using the 

cost ratio information from the various inventory levels. However, as 

shown here a problem can also be collapsed using only the holding cost 

information. Both of these methods of collapsing the problem, as well as 
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a summary of the manner in which this information is used in this 

dissertation, are included in the following sections. 

a. Collapsing the problem using holding costs The idea of 

collapsing the problem using only holding costs is new to this 

dissertation. This idea depends upon the use of set holding costs. That 

is, holding costs are based upon the set of items which are required for 

one finished product rather than based upon each of the individual items 

themselves. The use of set holding costs is not new and was described in 

the literature review in Section Il.C.ô.b. 

In order to show how the problem can be collapsed using only holding 

costs. Figure 2.4 (or 4.2) is again repeated and is shown as Figure 4.5. 

This time two alternate lot sizing plans are shown as the two sets of 

dashed lines. These two lot sizing plans are to join the two lots at 

level x+1 or level x+2. 

Level x+3 

Level x+2 

Level x+1 

Level X 

Time •+ « 

FIGURE 4.5 - Joint Sequencing With Two Options 
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The difference in total costs for these two lot sizing plans is 

easily determined. First, the total costs for all levels other than 

levels x+1 and x+2 are the same for either plan. Also, since the lead 

time offsets are the same for all lots passing through the system, the 

lots are the same number of periods apart at both levels x+1 and x+2. 

Finally, there is the same number of sets of parts going through both 

levels. '—-

Thus, the total cost of joining the two lots at level x+1 is simply 

the number of sets of parts times the number of periods apart the two lots 

are times the holding cost parameter H[x+1] plus a setup at both levels 

x+1 and x+2 plus the total cost for all other levels. The cost of joining 

the two lots at level x+2 is the same except the holding cost parameter to 

use is H[x+2] and there is an additional setup at level x+1. These two 

formulas are shown in Equations 4.1 and 4.2 with the constants included as 

p and K. 

TC[x+l] = H[x+1] • p + S[x+1] + S[x+2] + K (4.1) 

And 

TCLx+2] = H[x+2] • p + 2 • S[x+1] + S[x+2] + k (4.2) 

Where : 

TC[x+l] = the total cost of joining lots at level x+1; 

TC[x+2] = the total cost of joining lots at level x+2; 

H[x+1] = the holding cost for level x+1 in $/unit-sets inventory; 

H[x+2] = the holding cost for level x+2 in $/Unit-sets inventory; 

p = the number of sets times the periods the lots are apart; 

S[x+1] = the setup cost at level x+1 in $/setup; 
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S[x+2] = the setup cost at level x+2 in $/setup; 

K = the constant total cost for all other levels. 

Now, simply, imagine that TC[x+2] is less than TC[x+l] as shown in 

Equation 4.3. This reduces to Equation 4.4 when the common factors are 

removed. Finally, since S[x+1] is strictly nonnegative and is on the 

small side of the inequality and p is a constant; the inequality can be 

reduced to Equation 4.5. 

TC[x+2] < TcCx+1] (4.3) 

Or 

H[x+2] • p + S[x+1] < H[x+1] • p (4.4) 

Yields 

H[x+2] < H[x+1] (4.5) 

Where: 

TC[x+l] = the total cost of joining lots at level x+1; 

TC[x+2] = the total cost of joining lots at level x+2; 

H[x+1] = the holding cost for level x+1 in $/unit-sets inventory; 

H[x+2] = the holding cost for level x+2 in $/Unit-sets inventory; 

p = the number of sets times the periods the lots are apart; 

S[x+l] = the setup cost at level x+1 in $/setup. 

Thus, in order for the total cost to be reduced by joining the lots 

at level x+2 instead of x+1, the set holding cost must also be smaller at 

level x+2. If the set holding cost is not smaller at level x+2, the 

optimum solution will never choose to join the lots at level x+2 and the 

problem can be collapsed. This same proof can be extended to all levels. 
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The end result of this proof is that all viable levels must have 

decreasing set holding costs from top (finished product) to bottom (raw 

material). If a level does not have a decreasing set holding cost, that 

level can be collapsed and removed from the lot sizing problem. 

For an assembly problem, each subtree needs to be analyzed 

separately. That is, if a parent part has two child parts, collapsing one 

of the children does not require collapsing both of the children. It 

would be possible for one of the subtrees to join lots while the other 

subtree does not. 

Before leaving two caveats are, probably, required. First, this 

dissertation does not consider scrap or rework. Thus, if scrap and/or 

rework are included, the set holding costs should be adjusted accordingly 

before the problem is collapsed. This should be relatively simple since 

scrap/rework is usually treated using yield constants for the various 

levels. Thus if the yield is 90% for a level, the set holding cost for 

all lower levels should reflect the fact that 11.1% more parts are 

included in the set on average than are actually required in the finished 

product. 

Second, decreasing set holding costs are probably common in actual 

inventory systems. As items flow from raw materials to finished goods, 

they tend to get larger and more valuable and thus have a higher set 

holding cost. 
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b. Collapsing the problem using cost ratios The idea of 

collapsing the problem using cost ratios is not new and was reviewed in 

Section II.C.12. This previous study used the echelon method in 

determining holding costs. However, the use of echelon holding costs will 

again depend upon the manner in which the lot sizes are developed, as 

described in Section IV.B.2. 

A proof that cost ratios can be used to collapse the problem is easy 

to develop and is shown in Equations 4.6 through 4.11. This proof, again, 

uses Figure 4.5. However, this time the lots are imagined joined at level 

x+2. 

The lots will be joined at level x+2, only, if the setup cost at 

level x+2 is higher than the cost of holding the parts in inventory at 

level x+2, as shown in Equation 4.6. Solving Equation 4.6 for p gives 

Equation 4.7. In order for the lots to be joined at level x+2, they must 

not have been joined at level x+1, which in turn means that the inequality 

shown in Equation 4.8 must be true. Again, solving for p yields Equation 

4.9. 

Equation 4.10 can be developed by joining Equations 4.7 and 4.9. 

Finally, Equation 4.11 shows that the cost ratios must be increasing. The 

development of Equation 4.11 is possible since H[x+1] and H[x+2] are 

strictly positive and H[x+1] must be larger than H[x+2] as shown in the 

previous section. 

S[x+2] > HCx+2] • p (4.6) 

Or 
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S[x+2] 4- H[x+2] > p (4.7) 

And 

H[x+1] • p > H[x+2] • p + S[x+1] (4.8) 

Or 

p > sEx+1] 4- (H[x+1] - H[x+2]) (4.9) 

Thus 

S[x+2] -f H[x+2] > p > sCx+1] f (H[x+1] - H[x+2]) (4.10) 

Or 

S[x+2] + H[x+2] > S[x+1] 7 HCx+1] (4.11) 

Where: 

S[x+l] = the setup cost at level x+1 in $/setup; 

S[x+2] = the setup cost at level x+2 in $/setup; 

H[x+1] = the holding cost for level x+1 in $/unit-sets inventory; 

H[x+2] = the holding cost for level x+2 in $/unit-sets inventory; 

p = the number of sets times the periods the lots are apart. 

Equation 4.11 can, of course, be applied to any level in a MRP 

system. Thus, Equation 4.11 shows that the cost ratios must be increasing 

from the top levels to the bottom levels throughout the MRP system or 

levels can be collapsed. If an assembly system is used, each subtree 

should, again, be treated independently. 

c. Summary This section has shown that levels in an MRP system 

can often be collapsed into adjoining levels for lot sizing purposes. In 

general, the collapsing of the problem can be done before any lot sizing 

is performed. The result is that the number of levels which need to be 
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examined for lot sizing purposes is often less than the total number of 

levels in the MRP system. 

The final question surrounding the idea of collapsing levels out of 

the lot sizing problem is what to do with the parameters for the collapsed 

level. First, when a level is collapsible, the level will always react in 

a lot for lot manner. Parts will never be held in inventory at the level. 

Thus, the level can be removed from the lot sizing system and simply 

treated as a portion of the parent level. Since parts will never be held 

in inventory, the inventory holding cost for the level can be discarded if 

the full cost method of valuing inventory is used. If the echelon method 

of valuing inventory is used, care should be taken that the echelon costs 

for the parent and child levels reflect the value of the collapsed level. 

The setup cost for the collapsed level, on the other hand, always 

needs to be included in the setup cost for parent items. Once a lot is 

formed at the parent level, this lot will also pass through the collapsed 

level in a lot for lot manner. This is true no matter what lot sizing 

method is used. 

Collapsible levels are not included in the remaining portion of this 

study. All data can be imagined as either previously collapsed or 

collapse proof. 

4. Rolling horizon effects 

As shown earlier, a rolling horizon environment describes the manner 

in which the passage of time is handled in an MRP system. As time passes, 
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the current demands become history and additional demands are added to the 

end of the planning horizon. All MRP systems are subject to a rolling 

horizon, unless the total demand for the life of the product is known at 

the start of production. 

There are two main issues involved in analyzing the rolling horizon 

environment. The first issue is the effect of a rolling horizon on the 

performance of optimal solutions. The second issue is the effect of a 

rolling horizon on the performance of heuristic solutions. Both of these 

issues are discussed in a separate section. Also included is a summary of 

the manner in which rolling horizons are treated in this dissertation. 

a. The rolling schedule environment and optimal solutions An 

optimal solution to an MRP type of problem guarantees optimality only for 

a fixed horizon problem. That is, the optimal solution must be developed 

using known data and in an MRP system these known data are available only 

for the period of time contained in the planning horizon. As this horizon 

moves (rolls), new data are added to the end. These new data can in turn 

make previous decisions nonoptimal. 

In this section, a simple example is developed which shows how an 

optimal solution can easily be turned nonoptimal in a rolling horizon 

environment. This example uses a single level problem and constant per-

period demand, although the process can easily be seen to extend to 

variable demand and the multilevel problem. The example also uses 

constant setup and holding costs consistent with the assumptions used 

throughout this dissertation. The example uses the data in Table 4.1. 
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TABLE 4.1 - Example Parameters 

Per-lot Setup Cost = $35.00 

Per-part Per-period Holding Cost = $1.00 

Constant Per-period Demand = 10 

Length of the Demand Array = 6 

Length of the Planning Horizon = 4 

The only six possible lot sizing plans using a planning horizon of 

four periods are shown in Table 4.2. In Table 4.2 each possible lot 

sizing plan is given an option number. An optimal solution to this 

problem would of course choose the minimum cost solution from these six 

options. The six possible options are: 

• Option 1 — produce the four period planning horizon in four lots. 

Each lot includes the demand from only one period. 

• Option 2 — produce the four period planning horizon in two lots. 

Each lot includes the demand from two periods. 

• Option 3 — produce the four period planning horizon in two lots. 

The first lot includes the demand from three periods. The second 

lot includes the demand from only one period. 

• Option 4 — produce the four period planning horizon in one lot. 

The lot includes the demand from all four periods. 

• Option 5 — produce the four period planning horizon in three lots. 

One lot includes the demand from two periods. The other two lots 

include the demand from only one period each. 
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• Option 6 — produce the four period planning horizon in two lots. 

The first lot includes the demand from one period. The second lot 

includes the demand from three periods. 

TABLE 4.2 - Possible Lot Sizing Plans 

Period 1 2 3 4 

Demand 10 10 10 10 

Option 1 Lot Sizing Plan 10 10 10 10 

Option 2 Lot Sizing Plan 20 20 

Option 3 Lot Sizing Plan 30 10 

Option 4 Lot Sizing Plan 40 

Option 5 Lot Sizing Plan 20 10 10 

Option 6 Lot Sizing Plan 10 30 

Option 5 is trivial. If Option 5 develops a lower total cost than 

Option 1, the total cost for Option 5 must be higher than the total cost 

for Option 2. In other words, for constant per-period demand, setup cost, 

and holding cost; if it is cheaper to join two one period lots into one 

two period lot, it must be cheaper still to join four one period lots into 

two two period lots. Option 5 is not investigated. 

Regarding Option 6, given constant per-period demand, setup cost, and 

holding cost; the total cost for the fixed horizon problem developed by 

Option 6 is the same as that developed by Option 3. In a rolling schedule 

environment, however. Options 3 and 6 would develop very different global 

results. Option 3 would develop lot sizes with 30 items in each lot. 
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while Option 6 would develop lot sizes with 10 items in each lot. Thus, 

Option 6 would develop lot sizes the same as Option 1. Because of this, 

Option 6 is not investigated. 

The real end result of this cost equivalence for Options 3 and 6 is 

that depending upon the particular optimal solution implementation, either 

Option 3 or Option 6 could be selected if they both developed a lower cost 

than all the other possible options. That is, for constant per-period 

demand, setup cost and holding cost; if the minimum cost solution is to 

use two lots of differing length, the optimal solution could logically 

select either the smaller or the larger lot size to be produced first. In 

the rolling schedule environment, where only the first lot is implemented 

and then the planning horizon is rolled, this could have a great effect on 

the global total cost which is developed. The choice by the optimal 

solution of the smaller or larger lot first is not investigated further in 

this dissertation. 

The costs which are developed by the remaining options (1, 2, 3, and 

4) are shown in Table 4.3. The holding cost shown in Table 4.3 are 

calculated using the end of period (EOP) method. 

Table 4.3 shows that Option 2 develops the minimum cost solution for 

the four period planning horizon. Of course any type of optimal solution 

will select Option 2 for this four period problem. However, as will soon 

be shown, the global optimum lot size is to use three periods of demand in 

each lot. 
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TABLE 4.3 - Costs for Various Options 

Period 1 2 3 4 1 2 3 4 

Demand 10 10 10 10 10 10 10 10 

Option 1 Option 2 

Lot Sizing Plan 10 10 10 10 20 20 

Ending Inventory 0 0 0 0 10 0 10 0 

EpP Holding Cost 0 0 0 0 10 0 10 0 

Setup Cost 35 35 35 35 35 35 

Sum Total Cost 35 70 105 140 45 45 90 90 

Option 3 Option 4 

Lot Sizing Plan 30 10 40 

Ending Inventory 20 10 0 0 30 20 10 0 

EOP Holding Cost 20 10 0 0 30 20 10 0 

Setup Cost 35 35 35 

Sum Total Cost 55 65 65 100 65 85 95 95 

When this solution for the four period planning horizon is used in 

the rolling schedule environment, the first lot containing two periods of 

demand is fixed. These first two periods are then removed from the 

planning horizon and the next two periods added. This, again, results in 

a planning horizon of four periods and exactly the same problem. Again, 

the optimal solution is Option 2. 

When the second lot is removed from the planning horizon no 

additional periods are available to bring the planning horizon back up to 

four periods. The planning horizon then consists of only two periods 
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(periods five and six). This leaves only two options available, i.e., use 

a lot containing both periods or use two lots containing one period each. 

By examining the costs developed in the first two periods of Option 1 and 

Option 2 in Table 4.3, it can be seen that including both periods five and 

six in one lot is the minimum cost solution. 

Thus, for this planning horizon and set of parameters, the optimal 

solutions to the series of fixed horizon problems select an overall lot 

sizing plan containing three lots; each of which contains the demand from 

two periods. This results in a nonoptimal global solution. 

Table 4.4 shows the overall solution developed by the optimal fixed 

horizon problem and the actual overall optimum solution. The optimal 

fixed horizon solution develops an global cost of $135. The actual global 

optimal solution develops an overall cost of $130. Thus, the optimal 

fixed horizon solution is nonoptimal by 3.8% in this example. The holding 

costs are calculated using the EOF method in Table 4.4. 

Of course if the six period problem was formulated without a rolling 

schedule environment, the problem becomes a fixed horizon problem and the 

correct solution would be chosen. However, when an optimal solution is 

used in conjunction with a rolling horizon, the solution chosen is optimal 

only with respect to the current planning horizon. These local optimums 

do not necessarily result in a global optimum. This example develops one 

instance where the use of the fixed horizon optimum solution in 

conjunction with a rolling schedule environment results in a nonoptimal 

global solution. 
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TABLE 4.4 - Costs for Fixed Horizon and Global Optimum Solutions 

Period 1 2 3 4 5 6 

Demand 10 10 10 10 10 10 

Fixed Horizon Optimum Solution 

Lot Sizing Plan 20 20 20 

Ending Inventory 10 0 10 0 10 0 

EOP Holding Cost 10 0 10 0 10 0 

Setup Cost 35 35 35 

Sum Total Cost 45 45 90 90 135 135 

Global Optimum Solution 

Lot Size 30 30 

Ending Inventory 20 10 0 20 10 0 

EOP Holding Cost 20 10 0 20 10 0 

Setup Cost 35 35 

Sum Total Cost 55 65 65 120 130 130 

b. The rolling schedule environment and heuristics This section 

examines the effects of a rolling horizon on heuristic solutions. Again, 

the examples developed in this section focus on single level problems but 

it is easy to extend the example to the multilevel environment. 

The heuristics that are used to operate in the single level discrete 

demand lot sizing environment do not suffer from the same problem as 

optimal solution in a rolling schedule environment. The heuristics do not 

consider the entire demand array at once. Rather, they consider the 

demands sequentially. 
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The heuristics start with the first period in the demand array and 

continue to add periods until the first lot is complete. When the first 

lot is complete, demands are added into the second lot until the second 

lot is complete, etc. In general, only one lot is considered at a time. 

Once a lot size is determined, no changes are made to that lot. 

Each heuristic uses a separate decision rule to determine when a lot 

is complete, with the decision rule processing the demand array 

sequentially. Thus, it would seem that the effects of a rolling schedule 

environment on the performance of the various heuristics would form the 

basis for a valid investigation. However, these effects tend to 

trivialize the performance evaluation. 

An example using constant per-period demand is, again, included to 

illustrate the manner in which the rolling schedule environment can 

trivialize a heuristic performance evaluation. Figure 4.6 is included for 

the purpose of this example. Figure 4.6 graphically shows the single 

level discrete demand lot sizing environment given constant per-period 

demand, constant setup cost, and constant holding cost [128]. 

For constant per-period demand, setup cost, and holding cost, without 

a rolling schedule environment, it can easily be shown that a number of 

heuristics will always develop an optimal solution. These same heuristics 

will develop the global optimum solution even with a rolling horizon given 

that the planning horizon is larger than that required by the global 

optimum. Some of the heuristics which develop global optimums include the 

part-period algorithm [84], the Silver-Meal heuristic [221], and the Groff 
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FIGURE 4.6 - Constant Demand Discrete Lot Sizing Environment 

marginal cost rule [118]. In Figure 4.6 this optimum number of periods is 

shown as 0 .  

In addition, imagine that two other heuristics are used to lot size 

the demand array without using a rolling schedule environment. Imagine 

that one heuristic chooses a larger sized lot and one heuristic chooses a 

smaller sized lot. Call the number of periods in the smaller sized lot a. 

Call the number of periods in the larger sized lot 7. Both a and 7 are 

also shown in Figure 4.6. 
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The total cost for a lot sizing plan using either a or 7 periods per-

lot is higher than the total cost for the lot sizing plan using P periods 

in each lot as shown in Figure 4.6. The magnitude of the difference in 

total costs is of no concern in this analysis. The only important fact is 

that the costs are higher for all lot sizes other than the optimum. 

If the planning horizon in use for the performance evaluation is 

larger than 7 (the largest number of periods to join into each lot for the 

three heuristics), the rolling schedule environment has no effect on the 

performance analysis. Each of the heuristics develops lot sizing plans 

the same under this rolling schedule environment as the lot sizing plans 

developed by the heuristic without the rolling schedule environment. This 

is shown in Table 4.5. In Tables 4.5 through 4.7, P represents the length 

of the planning horizon. 

TABLE 4.5 - Effects of a Large Planning Horizon (P) 

Planning Horizon 
Heuristic Lot Sizes 
Rolling Schedule Lot Sizes 

a 
a 

a 
(3 

7 
7 

p 

1 < Periods In Each Lot < 00 

If the planning horizon (P) is less than 7  periods and greater than 

or equal to 0 periods, the rolling schedule environment only affects the 

performance of the heuristic which attempts to join 7 periods into each 

lot. This heuristic is not able to join as many periods into each lot as 

the heuristic desires. The planning horizon overrides the decision rule 

for the heuristic. 
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As shown in Figure 4.6, the total cost for the affected heuristic 

decreases and becomes closer to the optimum. When the planning horizon 

(p) is decreased to the optimum number of periods to join into each lot 

(p), the solution developed by the heuristic which attempts to join ? 

periods into each lot becomes optimal. This results because only p 

periods can be joined into each lot due to the planning horizon. The 

performance of the heuristic which attempts to join o periods in each lot 

is unaffected and remains nonoptimal. This is shown in Table 4.6. 

TABLE 4.6 - Effects of a Medium Planning Horizon (p) 

Planning Horizon 
Heuristic Lot Sizes 
Rolling Schedule Lot Sizes 

a 

a 

P 

P 
py 

7 

1 < Periods In Each Lot < CD 

For all planning horizons smaller than 0 periods, the optimal 

solution is unavailable. Those heuristics which develop the optimal 

solution when not in a rolling schedule environment are forced by the 

planning horizon to select lot sizes that are too small. The solution 

chosen is the best available but is nonoptimal when the entire demand 

array is considered. 

Also, when the planning horizon is less than or equal to 0 periods, 

the heuristic which attempts to join 7 periods into each lot, if not for 

the rolling schedule environment, chooses the best possible solution 

available (p). Thus, for all planning horizons less than or equal to P 

periods, those heuristics which would chose too large of lot sizes, if not 
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for the rolling schedule environment, are limited by the planning horizon 

to choosing the best solution available. 

When the planning horizon is decreased to a periods (or all smaller 

values), the solutions developed by all three heuristics are equivalent. 

The planning horizon (P) is then the number of periods joined into each 

lot for all three heuristics. This is shown in Table 4.7. 

TABLE 4.7 - Effects of a Small Planning Horizon (p) 

Planning Horizon 
Heuristic Lot Sizes 
Rolling Schedule Lot Sizes 

P 
a 

a/37 

g 7 

< Periods In Each Lot < » 

Thus, the use of a rolling schedule environment can only decrease the 

variation in the performance exhibited by the various heuristics, at least 

for constant per-period demand. As the planning horizon becomes smaller 

and approaches the optimum number of periods of demand to join into each 

lot, the performance of those heuristics that attempt to create lots that 

are too large is improved. When the planning horizon is decreased 

further, the optimum number of periods to join into each lot is no longer 

available, and the performance of the best heuristics approaches the 

performance of those heuristics which join too few periods of demand into 

each lot. Finally, when the planning horizon becomes very small, the 

performance of all heuristics is equivalent. 
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While this analysis is developed using constant per-period demand, it 

is easy to see that the general results still apply if the per-period 

demand varies. Some heuristics still choose lots that are too large and 

some heuristics still choose lots that are too small. The use of a 

planning horizon still decreases the variation in performance exhibited by 

the various heuristics. 

The object of any performance analysis should, of course, be to 

highlight the differences in the performance of the various alternatives. 

Thus, the use of a rolling schedule environment to analyze the performance 

of various heuristics is counter productive. The use of a rolling 

schedule environment can only limit the apparent difference in the 

performance of the various heuristics. 

In a real world application where a planning horizon must be used, 

the best choice for a heuristic is the heuristic that performs best 

without a planning horizon. If the planning horizon is larger than the 

number of periods that would be chosen by this heuristic, the planning 

horizon has no effect. If the planning horizon is smaller than the number 

of periods which would be chosen by this heuristic, the heuristic chooses 

the best solution possible (the maximum allowed by the planning horizon). 

Thus, the effects of a rolling schedule environment need not be considered 

when choosing a heuristic for real world applications. 

While this examination focuses on the single level environment, it is 

easy to see that the effects would also carry over into the multilevel 

environment. Heuristics must still tend to lot size too small, too large. 
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or just about correct. If a rolling horizon environment is added to the 

comparison of these heuristics, the only effect must be to decrease the 

variability of the various heuristics. The best choice for all lengths of 

planning horizons must still be the heuristic that operates best outside 

the rolling horizon environment. 

c. The rolling horizon implementation As described in the 

previous two sections, the decision on whether to use or not use a rolling 

schedule environment in an MRP analysis is not as straightforward as it 

first might seem. If optimum solutions are examined, not using a rolling 

schedule will result in a bias in their favor. If heuristics are examined 

using a rolling schedule, the rolling horizon will tend to trivialize the 

simulation results. 

In this dissertation, the goal is to develop and test a heuristic 

method of lot sizing an MRP environment. Thus, in this dissertation, a 

rolling horizon is not used. Rather long fixed length demand arrays are 

analyzed. 
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V. MODEL SIMULATION 

The simulation contained in this dissertation investigates six 

different MRP lot sizing methods. These different methods include four 

single level heuristics, one modified single level heuristic using the 

McLaren setup cost modification, and the new heuristic described in this 

dissertation. The first section in this chapter outlines the manner in 

which the simulation is performed. The remaining sections each describe a 

separate lot sizing method and contains the accompanying simulation 

results. 

A. Simulation Development and Data Presentation 

The simulation contained in this dissertation was developed and run 

on IBM-PC compatible microcomputers, using the Microsoft C V5.1 compiler. 

The simulation uses two types of input parameters, master production 

schedule (MPS) data and cost parameter data. Both of these, along with 

the method used to display simulation output, are described in a following 

section. 

1. Master production schedule construction 

The master production schedule (MPS) data were developed using the 

random number generators contained in the SIMSCRIPT II.V language. A 

total of 15 demand arrays were used, with each of the demand arrays 360 

periods long, and with each demand array having a mean of approximately 

100 units per period. Table 5.1 summarizes the demand arrays. 
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TABLE 5.1 - Demand Array Statistics 

Demand Demand Coefficient High Low 
Array Mean of Variation Demand Demand 

D[l] 100.0 0.0 100 100 
D[2] 100.3 0.119 120 80 
D[3] 97.2 0.465 179 20 
D[4] 99.7 0.121 131 62 
D[5] 97.8 0.449 197 3 
D[6] 100.4 0.703 150 0 
D[7] 104.2 1.370 300 0 
D[8] 102.8 0.485 150 50 
D[9] 98.5 0.538 180 20 
D[10] 100.0 0.500 150 50 
D[ll] 98.9 0.506 150 50 
D[12] 97.1 0.544 150 10 
D[13] 95.1 0.575 189 10 
D[14] 102.1 0.686 150 0 
D[15] 100.9 0.728 200 0 

2. Parameter development 

In this dissertation, three different sets of* model parameters are 

used to investigate the various lot sizing methods. The first two sets 

consist of sequential production and accompanying cost parameters, with 

the third set using assembly production (see Figures 2.1 and 2.2). Not 

only were data developed for each complete parameter set, but also for 

numerous portions of each set. 

The first sequential production set consists of up to six levels 

(nodes), with data developed as each level (node) is added. The second 

sequential production set consists of up to twenty levels, with data 

developed, only, for four, eight, twelve, sixteen, and twenty levels. The 

assembly production set consists of up to three levels and eight nodes, 

with data developed as each node is added. Figure 5.1 shows this assembly 
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production set, with the nodes numbered in the order in which they are 

added. 

FIGURE 5.1 - Assembly Production Set Structure 

Because of the desire to avoid using a set of cost parameters in 

which one or more levels could be collapsed (see Section IV.B.3), the set 

holding costs for the various levels decrease from top (finished product) 

to bottom (raw material), and were held constant for all iterations, while 

the setup cost was varied. These holding costs are shown in Table 5.2. 

In addition, the setup cost was the same for all levels during each 

iteration. However, 26 iterations of each model were run with the setup 

cost varying from 10 to 10010 in steps of 400. Thus, for example, for 

sequential set one, a total of 156 iterations was run (combinations of 1, 

2, 3, 4, 5, and 6 levels and 26 holding cost values) for each of the 15 

demand arrays tested. For sequential set two a total of 130 iterations 

was run for each demand array and for the assembly set a total of 208 

iterations was run for each demand array. 

Raw Material 

Component Parts 

Finished Product 
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TABLE 5.2 - Simulation Holding Costs 

NODE SEQUENTIAL SET 1 SEQUENTIAL SET 2 ASSEMBLY SET 1 

1 32 40 32 
2 16 38 14 
3 8 36 9 
4 4 34 4 
5 2 32 2 
6 1 30 2 
7 28 5 

a 26 2 
9 24 
10 22 
11 20 
12 18 
13 16 
14 14 
15 12 
16 10 
17 8 
18 6 
19 4 
20 2 

3. Simulation data representation 

All resulting simulation data are presented in three dimensional 

surface plots produced on a Xerox 4050 laser printer using the SASGRAPH 

plotting package. In general, these plots represent the average results 

developed over all 15 of the demand arrays. Equation 5.1 shows the manner 

in which the data shown in the plots was developed. 

k 
Z TC[???](x,y,i) 
i°l 

Z(x,y) = k (5.1) 
Z TC[lLS](x,y,i) 
i=l 

Where: 

Z(x,y) = the performace in percentage degradation; 
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X = the setup cost (X axis); 

y = the number of levels or nodes (Y axis); 

k = the number of demand arrays (15); 

TC[???](x,y,i) = total costCmethod] for given x, y, and i; 

TC[lLS](x,y,i) = total costClLS] for given x, y, and i. 

Although the plots are all the same physical size, the units on the 

performance axis (z) are considerably different for the various plots. 

Therefore care should be taken when comparing different plots in order to 

correctly identify the relative performance. 

Originally, an attempt was made to develop the optimum multilevel 

solution for a number of models and sets of parameters. However, 

developing the optimum solution proved too computer intensive to be of 

much value. Thus, the individual plots represent the performance of the 

various lot sizing methods divided by the performance of the new 

multilevel heuristic over the same set of data. 

In the figures, the bottom right axis shows the setup cost and 

increases from left to right. The bottom left axis shows the number of 

levels (nodes) in the data and increases from right to left. The vertical 

axis shows the percentage cost increase (total cost for the method divided 

by the total cost for the new heuristic). 

Each of the figures represents the average total cost over all 15 

demand arrays of 360 period each, for each number of levels (nodes) and 26 

sets of cost parameters. Thus, each figure depicting sequential set one 
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contains 156 data points (6*26), each of which contains the information 

from 5400 periods (15*360). 

Of final note is the fact that the figures developed during this 

analysis form but three planes through the solution space for the various 

lot sizing methods. In these planes, the setup costs were constant for 

all levels, with holding cost as shown in Figure 5.2. Of course, an 

infinite number of other planes could also be studied. It is, simply, 

hoped that the results developed in this analysis are representative of 

the general results available from each of the various lot sizing models. 

B. Single Level Wagner Whitin Algorithm 

The Wagner Whitin (WW) Algorithm is a well-known method of producing 

the optimum solution to a single level lot sizing problem. However, when 

this method is used sequentially on a multilevel problem, the overall 

results are not optimum, as shown in Figures 5.2 through 5.4. 

The overall nonoptimality of the WW algorithm occurs due to the 

inability of a single level algorithm to utilize the possible savings 

which can be achieved by optimizing multiple levels at one time. While 

the overall results achieved by the WW algorithm probably depend a great 

deal upon the cost ratios of the various levels, as shown in Figure 5.3, 

as the number of levels increases the overall performance of the WW 

algorithm degrades rapidly. At least the overall performance does not 

appear to continue to degrade with increases in setup costs for a given 

number of levels. 
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FIGURE 5.2 - WW Algorithm and Sequential Set 1 
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FIGURE 5.3 - WW Algorithm and Sequential Set 2 
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FIGURE 5.4 - WW Algorithm and Assembly Set 

C. Lot For Lot Heuristic 

The lot for lot (LFL) heuristic performed the worst of all the lot 

sizing methods studied. The results developed by this method are shown in 

Figures 5.5 through 5.7. This poor showing is not surprising since the 

LFL model also performs badly in the single level environment. 

Interpretation of the results developed by the LFL heuristic is 

rather straightforward. As the setup cost increases, the LFL heuristic 

does not attempt to balance setup and holding costs by joining multiple 

lots. If the number of levels in the system is increased, the LFL 

heuristic also suffers from the same myopia. Only if setup costs are 

exceedingly low does the LFL heuristic perform satisfactorily. In fact. 
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FIGURE 5.5 - LFL Heuristic and Sequential Set 1 
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FIGURE 5.6 - LFL Heuristic and Sequential Set 2 
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FIGURE 5.7 - LFL Heuristic and Assembly Set 

these figures graphically illustrate the extreme importance of setup cost 

reductions in the (so called) lot for lot manufacturing system. 

D. Groff Marginal Cost Rule Heuristic 

The Groff Marginal Cost Rule (GMR) was included in this analysis 

since this heuristic performs very well on the single level lot sizing 

problem. However, as shown in Figures 5.8 through 5.10, the heuristic 

suffers continuous and large scale performance degradation as the number 

of levels increases. 

The poor performance of the GMR heuristic closely models that of WW 

algorithm. This is to be expected, since the performance of the GMR 

heuristic closely approaches that of the WW algorithm for single level 
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FIGURE 5.8 - GMR Heuristic and Sequential Set 1 
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FIGURE 5.9 - GMR Heuristic and Sequential Set 2 
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FIGURE 5.10 - GMR Heuristic and Assembly Set 

problems, and since both are entirely myopic to multiple level 

interactions. Only on problems with a single level does the WW algorithm 

markedly and consistently outperform the GMR heuristic. Also, as with all 

the single level methods, the GMR heuristic performs very well for very 

small setup costs. 

E. Incremental Order Quantity Heuristic 

The Incremental Order Quantity (IOQ) heuristic was included in this 

analysis since a number of authors have claimed satisfactory results for 

this heuristic in a multilevel environment. The results obtained by the 

heuristic are shown in Figures 5.11 through 5.13. 



www.manaraa.com

91 

Percentage Cost Increase 

Nodes 

Setup Cost 

FIGURE 5.11 - lOQ Heuristic and Sequential Set 1 
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FIGURE 5.12 - lOQ Heuristic and Sequential Set 2 
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FIGURE 5.13 - lOQ Heuristic and Assembly Set 

The performance of the lOQ heuristic on single level lot sizing 

problems degrades rapidly as the setup cost rises. Quite simply, the lOQ 

heuristic creates too large of lot sizes. However, these excess sized 

lots work better as the number of levels increases. In fact, for the 

three level serial problem and relatively high setup costs, the lOQ 

heuristic performs as well any of the methods examined. However, as shown 

in Figure 5.12, as the number of levels increases, even the (larger) lot 

sizes developed by the lOQ heuristic become too small. 

This illustrates a particular problem with extending single level 

results into the multilevel environment. As stated earlier, the 

performance of the GMR heuristic closely approaches optimum for single 

level problems, while the lOQ heuristic does not perform very well at all. 
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However, when these two heuristics are used in a small sized multilevel 

environment the performance ranking is reversed. 

F. McLaren Modified Single Level Heuristic 

The McLaren setup cost modification (MCL) can be used to modify a 

single level heuristic for the multilevel environment. The MCL 

modification multiplies the cost ratio for a level by the sum of the 

square roots of cost ratios of all the children of the level. Thus, the 

setup cost used by any level (but the raw material) appears larger after 

the MCL modification is applied. In this dissertation the MCL 

modification is applied to the GMR heuristic. A number of authors have 

touted the MCL heuristic as very good in the multilevel environment. The 

results obtained by the GMR heuristic using the MCL modification are shown 

in Figures 5.14 through 5.16. 

The performance of the MCL modified GMR heuristic was disappointing. 

Although the MCL modification improved the performance of the GMR 

heuristic, the performance continues to degrade rapidly as the number of 

levels in the system rises. This should probably be expected since the 

setup cost modification includes information from, only, the children of 

the level being lot sized. As more levels are added, this modification 

does not increase the lot sizes fast enough. 
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FIGURE 5.14 - MCL Modified GMR Heuristic and Sequential Set 1 
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FIGURE 5.15 - MCL Modified GMR Heuristic and Sequential Set 2 
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FIGURE 5.16 - MCL Modified GMR Heuristic and Assembly Set 

G. The New Integer Lot Sizing (ILS) Heuristic 

A new multilevel lot sizing heuristic, called the integer lot sizing 

heuristic (ILS), has been constructed in conjunction with this 

dissertation. The performance of this new ILS heuristic has been reported 

throughout this chapter, in that the performance of the other lot sizing 

methods have been shown relative to the performance of the new heuristic. 

As shown in the figures accompanying the description of the other methods, 

the ILS heuristic consistently develops total costs less than the other 

methods, with this performance particularly noticeable as the number of 

levels in the system increases. 
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1. Overall performance comparison 

The performance of the ILS heuristic does not completely dominate the 

performance of the other lot sizing methods evaluated. Table 5.3 shows 

the 133 plotted locations in which other methods develop averaged costs 

less than those developed by the ILS heuristic. Of these 133 locations, 

50 represent locations comparing the WW algorithm and the ILS heuristic on 

a single level problem. Since the WW algorithm develops the optimum cost 

for these single level problems, there are only 83 locations in which the 

ILS heuristic was outperformed by a method which does not guarantee an 

optimum solution. 

During the course of the study 2470 total cost comparisons were made. 

These comparisons were comprised of 156 for sequential set one, 130 for 

sequential set two, and 208 for the assembly set, with each of these made 

for 5 methods (WW, LFL, GMR, lOQ, MCL). Thus, the ILS heuristic was 

outperformed on the averaged data only 5.38% of the time (l33-r2470), or 

3.43% of the locations other than WW and single level (83+2420). 

Also of note are the areas in which the ILS heuristic was 

outperformed. These tend to be areas with a sniall number of levels. For 

example, no other method outperformed the ILS heuristic for any location 

on sequential set two, with sequential set two starting with four levels 

and ending with twenty levels. Finally, the performance of the ILS 

heuristic was never bettered by over 4% for any location. 
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TABLE 5.3 - Locations of Poor ILS Heuristic Performance 

DATA SET METHOD SETUP COST LEVELS PERFORMANCE 

Serial 1 WW 

o
 
0
 

1 1 98.00564* 

Serial 1 ioq 8 1 99.99385 

Serial 1 ioq 12 1 99.98919 

Serial 1 ioq 16 1 99.96807 

Serial 1 ioq 20 1 99.96800 

Serial 1 ioq 24 1 99.93542 

Serial 1 ioq 96 3 99.60660 

Serial 1 ioq 100 3 99.83790 

Serial 1 mcl 4 2 99.99862 

Serial 1 mcl 8 2 99.98117 

Serial 1 mcl 12 2 99.86703 

Serial 1 mcl 20 2 99.79689 

Serial 1 mcl 24 2 99.16897 

Serial 1 mcl 4 3 99.96451 

Serial 1 mcl 8 3 99.96067 

Serial 1 mcl 12 3 98.97270 

Serial 1 mcl 16 3 99.84535 

Serial 1 mcl 4 4 99.98447 

Serial 1 mcl 8 4 99.81705 

Serial 1 mcl 12 4 99.80445 

Serial 1 mcl 4 5 99.92866 

Assembly WW 4 - 100 1 98.00564* 

Assembly ioq 8 1 99.99385 

Assembly ioq 12 1 99.98919 

Assembly ioq 16 1 99.96807 

Assembly ioq 20 1 99.96800 

Assembly ioq 24 1 99.93542 

Assembly ioq 48 2 99.27955 

Assembly ioq 52 2 99.28309 

Assembly ioq 56 2 99.98345 

Assembly ioq 60 2 99.86341 

Assembly ioq 64 2 98.25428 

Assembly ioq 68 2 98.56245 

Assembly ioq 72 2 98.12866 

Assembly ioq 76 2 98.27665 

Assembly ioq 80 2 98.90197 

Assembly ioq 84 2 99.41132 

Assembly ioq 88 2 99.61904 

Assembly ioq 96 2 98.90529 

Assembly ioq 100 2 99.02260 

Assembly ioq 92 3 99.58204 

Assembly ioq 96 3 96.83852 

A - Lowest performance for all setup costs listed 
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TABLE 5.3 - Continued 

DATA SET METHOD SETUP COST LEVELS PERFORMANCE 

Assembly icq 100 3 96.73311 

Assembly ioq 96 4 98.00487 

Assembly icq 100 4 98.30970 

Assembly ioq 96 5 99.67356 

Assembly mcl 4 2 99.96315 

Assembly mcl 8 2 99.90220 

Assembly mcl 12 2 99.84576 

Assembly mcl 16 2 99.84509 

Assembly mcl 20 2 99.59669 

Assembly mcl 24 2 99.25230 

Assembly mcl 32 2 99.99183 

Assembly mcl 44 2 99.66379 

Assembly mcl 64 2 98.71837 

Assembly mcl 68 2 99.27287 

Assembly mcl 72 2 98.83761 

Assembly mcl 76 2 99.09177 

Assembly mcl 80 2 99.55564 

Assembly mcl 84 2 99.86326 

Assembly mcl 88 2 99.82092 

Assembly mcl 8 3 99.94605 

Assembly mcl 16 3 99.70651 

Assembly mcl 24 3 99.99149 

Assembly mcl 28 3 99.25385 

Assembly mcl 44 3 99.75226 

Assembly mcl 48 3 98.77765 

Assembly mcl 52 3 99.49813 

Assembly mcl 56 3 99.71449 

Assembly mcl 84 3 99.03596 

Assembly mcl 88 3 99.05129 

Assembly mcl 92 3 98.23197 

Assembly mcl 96 3 98.90135 

Assembly mcl 100 3 98.98702 

Assembly mcl 8 4 99.95055 

Assembly mcl 0 6 99.99844 

Assembly mcl 4 6 97.77527 

Assembly mcl 8 6 97.91494 

Assembly mcl 12 6 99.73969 

Assembly mcl 20 6 98.90375 

Assembly mcl 24 6 97.88186 

Assembly mcl 28 6 99.33719 

Assembly mcl 40 6 99.70275 

Assembly mcl 44 6 99.70482 

Assembly mcl 8 7 99.95187 
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2. ILS methodology 

The good performance of the ILS heuristic is to be expected, since 

the heuristic uses one of the main MRP features developed in this 

dissertation. That is, the ILS heuristic recognizes the fact that lots 

should only be joined according to the integer principle. In fact, the 

ILS heuristic was constructed to specifically recognize that only the 

joining of lots, as shown in Figure 2.2, can be used to develop lot sizes 

in the optimum cost solution. 

In order to describe the method in which the ILS heuristic operates, 

Figures 5.17 through 5.20 have been developed. These figures follow the 

same conventions developed earlier, i.e., that the finished product is at 

the top and time flows from left to right. The figures show a four level 

system and display only the number of periods currently being analyzed. 

The ILS heuristic operates by sequentially analyzing the demands from 

left to right (increasing time). Thus, the ILS heuristic operates much 

like a single level heuristic in that decisions are made with respect to 

only one lot at a time. When a lot is closed, no changes to that lot will 

ever be made. The ILS heuristic will, then, open a new lot and proceed 

with the new lot until it is also closed. The ILS heuristic differs from 

single level heuristics in that the interaction between levels is 

recognized. 

In order to start the ILS heuristic, two periods of demand are 

needed. These two periods are shown in Figure 5.17. In Figure 5.17, the 
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FIGURE 5.17 - ILS Interaction Number One 

first jagged vertical line represents the start of the new series of lots 

and will never be modified by the ILS heuristic (always processed in a lot 

for lot fashion). The second jagged vertical line represents the series 

of lots that can be joined into the first lot. The dashed lines represent 

the possible locations in which this second series of lots can be joined 

into the first (at all four levels). 

The ILS heuristic determines at which level the greatest cost savings 

can be achieved by joining the lots. The applicable costs at a level are 

the sum of the setup costs which can be saved and the holding cost which 

would be created. Since the second series of lots in Figure 5.17 is being 

processed in a lot for lot fashion, the possible setup costs savings for a 

level are defined by the sum of setup costs from the level being analyzed 

through all lower levels. In the example developed here, the greatest 

savings are imagined at level x+2, with the resulting lot sizing plan 

shown in Figure 5.18. 
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FIGURE 5.18 - ILS Interaction Number Two 

The ILS heuristic, then, continues to examine the lot sizing plan for 

additional possible savings. This is shown by the dashed lines in Figure 

5.18. Here the possible setup cost savings include only those levels 

which are not already joined. The holding cost penalty for joining at a 

higher level should also take into account the fact that the lots are 

already joined at a lower level. In the example, if additional savings 

are possible by joining at level x+1, the lots would be joined at this 

level rather than level x+2. This is shown by the first two periods of 

demand in Figure 5.19. 

When all possible saving are realized from the first two periods of 

demand, a third period is added as, also, shown in Figure 5.19. This 

third period can be joined into, only, the adjacent periods as shown by 

the dashed lines. Adding this third period into the lot is performed in 

much the same manner as adding the second period. However, care needs to 

be taken to utilize the correct number of periods of time between adjacent 
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FIGURE 5.19 - ILS Interaction Number Three 

lots. For example, in Figure 5.19, the number of periods between adjacent 

lots at levels x and x+1 is one period while the number of periods between 

adjacent lots at levels x+2 and x+3 is two periods. 

Level X 

Level x-^1 

Level x-2 

Level x*3 

Time = 

FIGURE 5.20 - ILS Interaction Number Four 

When all possible savings for the third period are realized, a fourth 

period is added as shown in Figure 5.20. Again, the lot can only be added 

into the adjacent lots as shown by the dashed lines. At some point in 
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time no savings can be realized by adding the new lot into an adjacent 

lot. The ILS heuristic will then determine to close the old series of 

lots and open a new series. This is shown by the diagonal line in Figure 

5.20. 

This new lot will, again, always, be processed in a lot for lot 

fashion. When the next lot is added the system will, again, be as shown 

in Figure 5.17 and the ILS heuristic will process this new series of lots 

in the same manner as described above. 

3. Conclusions 

The performance of the ILS heuristic was consistently better on the 

data analyzed in this dissertation than the performance of the other 

methods tested. However, the ILS heuristic also takes more computer 

resources to operate than the other heuristic methods, with the ILS 

heuristic requiring approximately ten times the CPU time of the simpler, 

single level, methods. These extra CPU resources are required since the 

ILS heuristic uses information from all levels during the construction of 

the lots. 

This relatively small computational penalty allows the ILS heuristic 

to develop lots which depend not only on the data for a single level, but 

rather on the data for the entire MRP system. As the MRP system becomes 

more complex, the inclusion of this additional information becomes more 

valuable. Thus, the greatest difference in the performance of the ILS 

heuristic and other methods occurs on the data sets with the largest 
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number of levels and nodes. Finally, since real world MRP systems tend to 

be much more complex than those analyzed in this dissertation, the use of 

the ILS heuristic should prove valuable in actual MRP systems. 
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VI. CONCLUSIONS 

In the widely respected book on material requirements planning, 

Orlicky states "When it comes to selecting a lot-sizing technique ... it 

is the authors opinion that neither detailed studies nor exhaustive 

debates are warranted - in practice, one discrete lot-sizing algorithm is 

about as good as another." However, as shown in this dissertation, better 

lot sizing methods can be developed when these methods utilize a realistic 

understanding, of the interactions between the numerous levels which are 

always present in a real world MRP system. 

The information presented in this dissertation falls into two major 

categories. First, and perhaps foremost, a better understanding of 

multilevel discrete demand (MRP) lot sizing problem is developed. Second, 

a new heuristic for MRP lot sizing is designed and tested with the results 

developed by the new heuristic compared with the results developed by 

other, older methods. This new heuristic is called the integer lot sizing 

(ILS) heuristic and uses some of the MRP features described in this 

dissertation. 

The MRP features described in this dissertation include the 

following: 

• The viability of the integer principle for multilevel lot sizing. 

• The ability to collapse a multilevel lot sizing problem. 

• The effects of a rolling horizon on a multilevel simulation. 
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The fact that the integer principle can be utilized to describe the 

interaction of lots in a multilevel environment has been previously 

recognized. However, this dissertation presents a graphical proof for the 

integer principle and shows that only two types of interactions are 

actually used in an optimal solution. These are the lot for lot and joint 

interactions. 

The ability to collapse levels out of a multilevel system using cost 

ratio information was also previously described. However, a new proof for 

this is developed and presented. In addition, a method of collapsing 

levels using, only, holding costs is presented. The ability to collapse 

levels using holding cost information has never before been recognized. 

Previous simulations into the multilevel environment have often used 

rolling horizons. However, as described in this dissertation, when 

heuristics are analyzed, the use of rolling horizons can, only, trivialize 

the results. As shown in this dissertation, the best performing heuristic 

method in a fixed horizon problem must also be the best performing 

heuristic in a rolling horizon. 

Finally, this dissertation develops a new multilevel lot sizing 

heuristic called the integer lot sizing (ILS) heuristic. The ILS 

heuristic recognizes the interaction between the levels present in all MRP 

systems. The ILS heuristic consistently outperforms the other lot sizing 

methods tested, with this performance advantage most noticeable as the 

number of levels in the system grows. 



www.manaraa.com

107 

It is hoped that the work performed in this dissertation can help to 

add insight into the problem of developing workable lot sizes in a . 

multilevel MRP environment. While, perhaps, not an end unto itself, it 

can at least be hoped that this work can provide a beginning for a more 

complete understanding of the type of environment present in most 

repetitive manufacturing systems. 
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